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Repairing Faulty Theories

KnowItAll Ontology:

cap of (Tokyo, Japan) cap of (Kyoto, Japan)

Proof of inconsistency:

Tokyo 6= Kyoto,

cap of (Kyoto, Japan),

cap of (Tokyo, Japan), cap of (x, z) ∧ cap of (y, z) =⇒ x = y

cap of (y, Japan) =⇒ Tokyo = y

Tokyo = Kyoto

�

Reformation repair:

Block unification of cap of (Kyoto, Japan) and
cap of (y , Japan),
e.g., change cap of (Kyoto, Japan) to
was cap of (Kyoto, Japan),
or add time argument to cap of , e.g., present, past.
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Repairing Planning Failures

Plan failure in ORS: Mismatch of

Money(PA,£200) and Money(PA,£200,Credit Card)

Reformation repair: Unblock failed unification.

Change planning agent’s Money/2 to Money/3.
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Repairing Physics Theories

Where’s My Stuff Trigger:

O1 ` f (stuff ) = v1

O2 ` f (stuff ) = v2

Oarith ` v1 6= v2

Proof of Inconsistency:

v1 6= v2,
f (stuff ) = v2,

f (stuff ) = v1, y = x ∧ y = z =⇒ x = z

f (stuff ) = z =⇒ v1 = z
v1 = v2

�

Reformation Repair:
Block unification of f (stuff ) = v2 and f (stuff ) = z .
e.g., rename two occurrences of stuff apart.
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Example: Repairing a Faulty Proof of Cauchy’s

Faulty Theorem: The limit of a convergent series of
continuous functions is itself continuous [Cauchy].

Counter-Example: Square wave (discontinuous) is
convergent sum of sine waves (continuous) [Fourier].

Failed unification:

y ≥ y and n ≥ m(ε/3, x + b(δ(ε/3, x , n)))

due to an occurs check failure,
where m, δ and b are Skolem function.

Repair: Change ‘convergent’ to ‘uniformly convergent’.

Convergent:
∀x .∀ε > 0.∃m.∀n ≥ m. |

n∑
i=m

fi (x)| < ε

Uniformly Convergent:
∀ε > 0.∃m.∀x .∀n ≥ m. |

n∑
i=m

fi (x)| < ε

Note that ∀x is moved to after ∃m.
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The Standard Unification Algorithm

Case Before Condition After

Base >;σ Terminates
Trivial s ≡ s ∧ u;σ u;σ

Decomp f (~sn) ≡ f (~tn) ∧ u;σ
Vn

i=1 si ≡ ti ∧ u;σ

Clash f (~sm) ≡ g(~tn) ∧ u;σ f 6= g ∨ m 6= n fail
Orient t ≡ x ∧ u;σ x ≡ t ∧ u;σ
Occurs x ≡ s ∧ u;σ x ∈ V(s) ∧ x 6= s fail
Var Elim x ≡ s ∧ u;σ x 6∈ V(s) u{x/s};σ ⊕ {x/s}

Adapted from [Baader & Snyder, 2001][p455].

Returns unique most-general unifier.
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The Modified Unification Algorithm

Case Before Condition After

Base >;σ Terminates

CCs f (~sm) ≡ g(~tn) f = g ∧ n = m
Vn

i=1 si ≡ ti ∧ u;σ
CCf ∧u;σ f 6= g ∨ n 6= m Fail
VCf x ≡ t ∧ u;σ x ∈ V(t) Fail
VCs or t ≡ x ∧ u;σ x 6∈ V(t) u{x/t};σ ⊕ {x/t}
VV= x ≡ x ∧ u;σ u;σ
VV 6= x ≡ y ∧ u;σ x 6= y u{x/y};σ ⊕ {x/y}

Equivalent to standard unification algorithm.

Groups compound/compound and variable/compound cases
into success/fail.
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The Reformation Algorithm

Case Before Condition Block Unblock

Base > Failure Success

CCs f = g ∧ m = n Make f (~sm) 6= f (~tm)Wn
i=1 Block si ≡ ti

Vn
i=1 Unblock si ≡ ti

f (~sm) ≡ g(~tn) ∨ Block u ∧ Unblock u
CCf ∧u f 6= g ∨ m 6= n Success Make f (~sm) = g(~tn)Vn

i=1 Unblock ν(si ) ≡ ν(ti )
∧ Unblock ν(u)

VCf x ∈ V(t) Success Make x 6∈ V(t)
x ≡ t ∧ u ∧ Unblock ν(u{x/t})

VCs or t ≡ x ∧ u x 6∈ V(t) Make x ∈ V(t)
∨ Block u{x/t} Unblock u{x/t}

Adapts modified unification algorithm.

Flips success and failure cases to block/unblock unification.

Blocking is a disjunction; unblocking a conjunction.

Implemented and evaluated in swi Prolog.
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Example: Family Relations

Unprovable truth:

Mother(Camilla,William), ¬Mother(p, c ,Step) ∨ StepMother(p, c)
×

1 of 2 repairs: Add 3rd argument to Mother(Camilla,William).

Successful resolution:

Mother(Camilla,William, Step), ¬Mother(p, c ,Step) ∨ StepMother(p, c)

StepMother(Camilla,William)
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The Many-Sorted Reformation Algorithm

Case Before Condition Block Unblock

Base > Failure Success

CCs Make f (~sm) 6= f (~tm)
f = g

Vn
i=1 Unblock si ≡ ti

f (~sm):τf ∧ m = n
Wn

i=1 Block si ≡ ti ∧ Unblock u
≡ ∨ Block u

CCf g(~tn):τg Make f (~sm) = g(~tn)
∧ u f 6= g Success

∨ m 6= n
Vn

i=1 Unblock si ≡ ti
∧ Unblock u

VCs Make x ∈ V (t)
x:τx ≡ t:τt ∧ u x 6∈ V (t) ∨ τt 6�∗ τx Unblock u{x:τx/t:τt}

or ∧ τt �∗ τx ∨ Block u{x:τx/t:τt}
VCf t:τt ≡ x:τx ∧ u Make x 6∈ V (t)

x ∈ V (t) Success ∧ τt �∗ τx ∧
∨ τt 6�∗ τx Unblock u{x:τx/t:τt}

VVs D = glbs(τx , τy ) Make glbs(τx , τy ) = ∅ ∨
W

τd∈D Unblock

∧ D 6= ∅
V

τd∈D Block u{x:τx/y:τd , y:τy/y:τd}
x:τx ≡ u{x:τx/y:τd , y:τy/y:τd}

VVf y:τy ∧ u glbs(τx , τy ) = ∅ Success Make glbs(τx , τy ) 6= ∅ ∧
Unblock u{x:τd/y:τd}

Extended reformation to many-sorted logics.
Repairs now include splitting and merging of sorts.
Plus reorganisation of sort hierarchy.
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Example: Flying Penguins

Contradiction:

¬Flies(Penguin4 : Penguin), Flies(x : FlyingAnimal)

�

where Penguin ≺ Bird and Bird ≺ FlyingAnimal .

1 of 3 repairs: Split Bird into FlyingBird and Bird .

Replace Bird ≺ FlyingAnimal with
FlyingBird ≺ FlyingAnimal .
Add FlyingBird ≺ Bird .
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Search Space Control

Huge search space: many possible repairs for every unwanted
unification.

Each proof step requires unification.
Each unification step suggests multiple repairs.

Need heuristics to prune and prioritise.

Protect some functions/predicates.
Keep repairs minimal.
Maximise blocked inconsistencies; minimise blocked truths.
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Conclusion

Language repair essential in many applications.

Reformation is general-purpose algorithm.

Huge search space requires heuristic control.

Need to define minimality.

Explore extensions to other logics, e.g., DL.
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