Reformation: A Domain-Independent Algorithm
for Theory Repair

Alan Bundy
Joint work with Boris Mitrovic

School of Informatics,
University of Edinburgh

ESSENCE Lecture, Autumn School, 28" October 2014

Outline

@ The Need for Language Repair

© The Reformation Algorithm

© Discussion

The Need for Language Repair

Repairing Faulty Theories

KnowltAll Ontology:
cap-of (Tokyo, Japan) cap-of (Kyoto, Japan)

Proof of inconsistency:

cap_of (Tokyo, Japan), cap_of(x,z) A cap-of(y,z) = x =1y

cap_of (Kyoto, Japan), cap-of (y, Japan) => Tokyo =y
Tokyo # Kyoto, Tokyo = Kyoto
]

Reformation repair:

Block unification of cap_of (Kyoto, Japan) and

cap_of (y, Japan),

e.g., change cap_of (Kyoto, Japan) to

was_cap-of (Kyoto, Japan),
or add time argument to cap_of, e.g., present, past. @

The Need for Language Repair
Repairing Planning Failures

Plan failure in ORS: Mismatch of
Money(PA, £200) and Money(PA, £200, Credit_Card)

Reformation repair: Unblock failed unification.

Change planning agent’s Money /2 to Money /3.

The Need for Language Repair

Repairing Physics Theories

Where’s My Stuff Trigger:

O, F f(stuff)=w
O, b f(stuff)=w
Oarith = vi#wn

Proof of Inconsistency:

f(stuff)=wv1, y=xANy=z = x=1z
f(stuff) = vy, f(stuff) =z = vy =2z
Vi # Vo, Vi =W
O

Reformation Repair:
Block unification of f(stuff) = v, and f(stuff) = z. @
e.g., rename two occurrences of stuff apart.

The Need for Language Repair

Example: Repairing a Faulty Proof of Cauchy's

Faulty Theorem: The limit of a convergent series of
continuous functions is itself continuous [Cauchy].
Counter-Example: Square wave (discontinuous) is
convergent sum of sine waves (continuous) [Fourier].
Failed unification:

y > yand n>m(e/3,x + b(d(e/3, x,n)))
due to an occurs check failure,
where m, § and b are Skolem function.
Repair: Change ‘convergent’ to ‘uniformly convergent'.

Convergent:
VxVe>O]mVn>m|Zf)| < e

i=m

Uniformly Convergent:
Ve>03mVan>m|Zf) <e

i=m

Note that Vx is moved to after dm.

The Reformation Algorithm

The Standard Unification Algorithm

[[Case [Before [Condition [After I

Base T,0 Terminates

Trivial s=sAuo u; o

Decomp f(3") = f(t") ANu;o ALisi=tiNuio
Clash fGM =g(t")Auo f#gVm#n fail

Orient t=xAuo X=tAuo
Occurs X=sAu o x€EV()AxFs fail

Var Elim X=sAu o x & V(s) u{x/s}, o & {x/s}

o Adapted from [Baader & Snyder, 2001][p455].

@ Returns unique most-general unifier.

The Reformation Algorithm

The Modified Unification Algorithm

[[Case | Before [Condition | After]

Base T;0 Terminates

CCs f(3™) = g(t™) f=gAn=m| Al si=tAuoc
CCr Au; o fZgVn#m Fail

VCr X=tAuo x € V() Fail

VG, ort=xAuo x € V(1) u{x/t}, 0 & {x/t}
VVv_ X=xAu,o u; o

Wy | x=yAuo x#y u{x/y};o ® {x/y}

@ Equivalent to standard unification algorithm.

@ Groups compound/compound and variable/compound cases
into success/fail.

The Reformation Algorithm

The Reformation Algorithm

[[Case | Before [Condition [Block [Unblock |
Base | T Failure Success
CCs f=gAm=n | Make f(s7) # f(t™")
V/7_; Block s; = t; A7_; Unblock s; = t;
(M) = g(t") V Block u A Unblock u
CCr Au f#gV m%n | Success Make F(3™) = g(t")
A1 Unblock v(s;) = v(t;)
A Unblock v(u)
VCr x € V(t) Success Make x & V(t)
xX=tAu A Unblock v(u{x/t})
VCs ort=xAu | x € V(t) Make x € V(t)
V Block u{x/t} Unblock u{x/t}

Adapts modified unification algorithm.
Flips success and failure cases to block/unblock unification.

Blocking is a disjunction; unblocking a conjunction.

Implemented and evaluated in swi Prolog.

The Reformation Algorithm

Example: Family Relations

Unprovable truth:

Mother(Camilla, William), —Mother(p, c, Step) V StepMother(p, c)
X

1 of 2 repairs: Add 3" argument to Mother(Camilla, William).

Successful resolution:

Mother(Camilla, William, Step), —Mother(p, c, Step) V StepMother(p, c)
StepMother(Camilla, William)

®

The Reformation Algorithm

The Many-Sorted Reformation Algorithm

[[Case | Before [Condition Block [Unblock |
Base T Failure Success
(e Make F(3™) Z F(£™)
f=g A1 Unblock s; = t;
(3™)rs Am=n V7, Block s; = t; A Unblock u
= V Block u
CCr g(t")g Make F(57) = g(t")
Au f#g Success
vV m#n A Unblock s; = t;
A Unblock u
VCs Make x € V(t)
XTx = tTt Au x & V(t) Vo AT Ty Unblock u{x7y/tT¢}
or AT 2 Ty V Block u{xy/trt}
VCr tTe = xTx AU Make x & V(t)
x € V(t) Success AT 2F T A
Vo A 1y Unblock u{xty/tTt}
VVs D = glbs(7x, Ty) Make glbs(7x, Ty) = 0 V \/TdGD Unblock
AD#Q /\TdGD Block u{xTx/yTd, yTy /YTd}
XTx = u{XTx/yTd, YTy /¥Tq}
VV; YTy Au glbs(7x, 7y) = 0 Success Make glbs(7x, 7y) # 0 A
Unblock u{x1y/y7q}

@ Extended reformation to many-sorted logics.

e Repairs now include splitting and merging of sorts.
e Plus reorganisation of sort hierarchy.

The Reformation Algorithm

Example: Flying Penguins

Contradiction:

—Flies(Penguin4 : Penguin), Flies(x : FlyingAnimal)
U

where Penguin < Bird and Bird < FlyingAnimal.
1 of 3 repairs: Split Bird into FlyingBird and Bird.
@ Replace Bird < FlyingAnimal with
FlyingBird < FlyingAnimal.
o Add FlyingBird < Bird.

Discussion

Search Space Control

@ Huge search space: many possible repairs for every unwanted
unification.

e Each proof step requires unification.
e Each unification step suggests multiple repairs.

@ Need heuristics to prune and prioritise.

o Protect some functions/predicates.
o Keep repairs minimal.
e Maximise blocked inconsistencies; minimise blocked truths.

Discussion

Conclusion

Language repair essential in many applications.
Reformation is general-purpose algorithm.
Huge search space requires heuristic control.

Need to define minimality.

Explore extensions to other logics, e.g., DL.

Discussion

[§] Baader, F. and Snyder, W.
(2001).
Unification theory.
In Robinson, J. A. and Voronkov, A., (eds.), Handbook of
Automated Reasoning, Volume 1, volume |, chapter 8, pages
447-553. Elsevier.

	The Need for Language Repair
	The Reformation Algorithm
	Discussion

