
The Need for Language Repair The Reformation Algorithm Discussion

Reformation: A Domain-Independent Algorithm
for Theory Repair

Alan Bundy
Joint work with Boris Mitrovic

School of Informatics,
University of Edinburgh

ESSENCE Lecture, Autumn School, 28th October 2014



The Need for Language Repair The Reformation Algorithm Discussion

Outline

1 The Need for Language Repair

2 The Reformation Algorithm

3 Discussion



The Need for Language Repair The Reformation Algorithm Discussion

Repairing Faulty Theories

KnowItAll Ontology:

cap of (Tokyo, Japan) cap of (Kyoto, Japan)

Proof of inconsistency:

Tokyo 6= Kyoto,

cap of (Kyoto, Japan),

cap of (Tokyo, Japan), cap of (x, z) ∧ cap of (y, z) =⇒ x = y

cap of (y, Japan) =⇒ Tokyo = y

Tokyo = Kyoto

�

Reformation repair:

Block unification of cap of (Kyoto, Japan) and
cap of (y , Japan),
e.g., change cap of (Kyoto, Japan) to
was cap of (Kyoto, Japan),
or add time argument to cap of , e.g., present, past.



The Need for Language Repair The Reformation Algorithm Discussion

Repairing Planning Failures

Plan failure in ORS: Mismatch of

Money(PA,£200) and Money(PA,£200,Credit Card)

Reformation repair: Unblock failed unification.

Change planning agent’s Money/2 to Money/3.



The Need for Language Repair The Reformation Algorithm Discussion

Repairing Physics Theories

Where’s My Stuff Trigger:

O1 ` f (stuff ) = v1

O2 ` f (stuff ) = v2

Oarith ` v1 6= v2

Proof of Inconsistency:

v1 6= v2,
f (stuff ) = v2,

f (stuff ) = v1, y = x ∧ y = z =⇒ x = z

f (stuff ) = z =⇒ v1 = z
v1 = v2

�

Reformation Repair:
Block unification of f (stuff ) = v2 and f (stuff ) = z .
e.g., rename two occurrences of stuff apart.



The Need for Language Repair The Reformation Algorithm Discussion

Example: Repairing a Faulty Proof of Cauchy’s

Faulty Theorem: The limit of a convergent series of
continuous functions is itself continuous [Cauchy].

Counter-Example: Square wave (discontinuous) is
convergent sum of sine waves (continuous) [Fourier].

Failed unification:

y ≥ y and n ≥ m(ε/3, x + b(δ(ε/3, x , n)))

due to an occurs check failure,
where m, δ and b are Skolem function.

Repair: Change ‘convergent’ to ‘uniformly convergent’.

Convergent:
∀x .∀ε > 0.∃m.∀n ≥ m. |

n∑
i=m

fi (x)| < ε

Uniformly Convergent:
∀ε > 0.∃m.∀x .∀n ≥ m. |

n∑
i=m

fi (x)| < ε

Note that ∀x is moved to after ∃m.



The Need for Language Repair The Reformation Algorithm Discussion

The Standard Unification Algorithm

Case Before Condition After

Base >;σ Terminates
Trivial s ≡ s ∧ u;σ u;σ

Decomp f (~sn) ≡ f (~tn) ∧ u;σ
Vn

i=1 si ≡ ti ∧ u;σ

Clash f (~sm) ≡ g(~tn) ∧ u;σ f 6= g ∨ m 6= n fail
Orient t ≡ x ∧ u;σ x ≡ t ∧ u;σ
Occurs x ≡ s ∧ u;σ x ∈ V(s) ∧ x 6= s fail
Var Elim x ≡ s ∧ u;σ x 6∈ V(s) u{x/s};σ ⊕ {x/s}

Adapted from [Baader & Snyder, 2001][p455].

Returns unique most-general unifier.



The Need for Language Repair The Reformation Algorithm Discussion

The Modified Unification Algorithm

Case Before Condition After

Base >;σ Terminates

CCs f (~sm) ≡ g(~tn) f = g ∧ n = m
Vn

i=1 si ≡ ti ∧ u;σ
CCf ∧u;σ f 6= g ∨ n 6= m Fail
VCf x ≡ t ∧ u;σ x ∈ V(t) Fail
VCs or t ≡ x ∧ u;σ x 6∈ V(t) u{x/t};σ ⊕ {x/t}
VV= x ≡ x ∧ u;σ u;σ
VV 6= x ≡ y ∧ u;σ x 6= y u{x/y};σ ⊕ {x/y}

Equivalent to standard unification algorithm.

Groups compound/compound and variable/compound cases
into success/fail.



The Need for Language Repair The Reformation Algorithm Discussion

The Reformation Algorithm

Case Before Condition Block Unblock

Base > Failure Success

CCs f = g ∧ m = n Make f (~sm) 6= f (~tm)Wn
i=1 Block si ≡ ti

Vn
i=1 Unblock si ≡ ti

f (~sm) ≡ g(~tn) ∨ Block u ∧ Unblock u
CCf ∧u f 6= g ∨ m 6= n Success Make f (~sm) = g(~tn)Vn

i=1 Unblock ν(si ) ≡ ν(ti )
∧ Unblock ν(u)

VCf x ∈ V(t) Success Make x 6∈ V(t)
x ≡ t ∧ u ∧ Unblock ν(u{x/t})

VCs or t ≡ x ∧ u x 6∈ V(t) Make x ∈ V(t)
∨ Block u{x/t} Unblock u{x/t}

Adapts modified unification algorithm.

Flips success and failure cases to block/unblock unification.

Blocking is a disjunction; unblocking a conjunction.

Implemented and evaluated in swi Prolog.



The Need for Language Repair The Reformation Algorithm Discussion

Example: Family Relations

Unprovable truth:

Mother(Camilla,William), ¬Mother(p, c ,Step) ∨ StepMother(p, c)
×

1 of 2 repairs: Add 3rd argument to Mother(Camilla,William).

Successful resolution:

Mother(Camilla,William, Step), ¬Mother(p, c ,Step) ∨ StepMother(p, c)

StepMother(Camilla,William)



The Need for Language Repair The Reformation Algorithm Discussion

The Many-Sorted Reformation Algorithm

Case Before Condition Block Unblock

Base > Failure Success

CCs Make f (~sm) 6= f (~tm)
f = g

Vn
i=1 Unblock si ≡ ti

f (~sm):τf ∧ m = n
Wn

i=1 Block si ≡ ti ∧ Unblock u
≡ ∨ Block u

CCf g(~tn):τg Make f (~sm) = g(~tn)
∧ u f 6= g Success

∨ m 6= n
Vn

i=1 Unblock si ≡ ti
∧ Unblock u

VCs Make x ∈ V (t)
x:τx ≡ t:τt ∧ u x 6∈ V (t) ∨ τt 6�∗ τx Unblock u{x:τx/t:τt}

or ∧ τt �∗ τx ∨ Block u{x:τx/t:τt}
VCf t:τt ≡ x:τx ∧ u Make x 6∈ V (t)

x ∈ V (t) Success ∧ τt �∗ τx ∧
∨ τt 6�∗ τx Unblock u{x:τx/t:τt}

VVs D = glbs(τx , τy ) Make glbs(τx , τy ) = ∅ ∨
W

τd∈D Unblock

∧ D 6= ∅
V

τd∈D Block u{x:τx/y:τd , y:τy/y:τd}
x:τx ≡ u{x:τx/y:τd , y:τy/y:τd}

VVf y:τy ∧ u glbs(τx , τy ) = ∅ Success Make glbs(τx , τy ) 6= ∅ ∧
Unblock u{x:τd/y:τd}

Extended reformation to many-sorted logics.
Repairs now include splitting and merging of sorts.
Plus reorganisation of sort hierarchy.



The Need for Language Repair The Reformation Algorithm Discussion

Example: Flying Penguins

Contradiction:

¬Flies(Penguin4 : Penguin), Flies(x : FlyingAnimal)

�

where Penguin ≺ Bird and Bird ≺ FlyingAnimal .

1 of 3 repairs: Split Bird into FlyingBird and Bird .

Replace Bird ≺ FlyingAnimal with
FlyingBird ≺ FlyingAnimal .
Add FlyingBird ≺ Bird .



The Need for Language Repair The Reformation Algorithm Discussion

Search Space Control

Huge search space: many possible repairs for every unwanted
unification.

Each proof step requires unification.
Each unification step suggests multiple repairs.

Need heuristics to prune and prioritise.

Protect some functions/predicates.
Keep repairs minimal.
Maximise blocked inconsistencies; minimise blocked truths.



The Need for Language Repair The Reformation Algorithm Discussion

Conclusion

Language repair essential in many applications.

Reformation is general-purpose algorithm.

Huge search space requires heuristic control.

Need to define minimality.

Explore extensions to other logics, e.g., DL.



The Need for Language Repair The Reformation Algorithm Discussion

Baader, F. and Snyder, W.
(2001).
Unification theory.
In Robinson, J. A. and Voronkov, A., (eds.), Handbook of
Automated Reasoning, Volume 1, volume I, chapter 8, pages
447–553. Elsevier.


	The Need for Language Repair
	The Reformation Algorithm
	Discussion

