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Introduction



Introduction

◮ Goal in Artificial Intelligence: to build intelligent agents.

◮ Our definition of “intelligent”: perform an assigned task as

well as possible.

◮ Problem: how to act?

◮ We will explicitly model uncertainty.



Motivation

◮ Intelligent distributed systems are becoming ubiquitous:
◮ Smart energy grid infrastructure
◮ Surveillance camera networks
◮ Autonomous guided vehicles, vehicular networks
◮ Internet or smart phone applications

◮ Devices can sense, compute, act and interact.



Motivation

◮ Intelligent distributed systems are becoming ubiquitous:
◮ Smart energy grid infrastructure
◮ Surveillance camera networks
◮ Autonomous guided vehicles, vehicular networks
◮ Internet or smart phone applications

◮ Devices can sense, compute, act and interact.

◮ Growing need for scalable and flexible multiagent planning.

◮ Key issue: uncertainty



Outline

Before the break:

1. Introduction to decision making under uncertainty

2. Planning under action uncertainty (MDPs)

3. Planning under sensing uncertainty (POMDPs)

After the break:

1. Multiagent planning (Dec-POMDPs)

2. Communication



Agents

◮ An agent is a (rational) decision maker who is

able to perceive its external (physical)

environment and act autonomously upon it

(Russell and Norvig, 2003).

◮ Rationality means reaching the optimum of a

performance measure.

◮ Examples: humans, robots, some software

programs.



Agents

environment

agent

action

observation

state

◮ It is useful to think of agents as being involved in a

perception-action loop with their environment.

◮ But how do we make the right decisions?



Planning

Planning:

◮ A plan tells an agent how to act.

◮ For instance
◮ A sequence of actions to reach a goal.
◮ What to do in a particular situation.

◮ We need to model:
◮ the agent’s actions
◮ its environment
◮ its task

We will model planning as a sequence of decisions.



Classic planning

◮ Classic planning: sequence of actions from start to goal.

◮ Task: robot should get to gold as quickly as possible.

◮ Actions: → ↓ ← ↑

◮ Limitations:
◮ New plan for each start state.
◮ Environment is deterministic.



Classic planning

◮ Classic planning: sequence of actions from start to goal.

◮ Task: robot should get to gold as quickly as possible.

◮ Actions: → ↓ ← ↑

◮ Limitations:
◮ New plan for each start state.
◮ Environment is deterministic.

◮ Three optimal plans: →→ ↓,→ ↓ →, ↓ → →.



Conditional planning

◮ Assume our robot has noisy actions (wheel slip,

overshoot).

◮ We need conditional plans.

◮ Map situations to actions.



Decision-theoretic planning

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1

◮ Positive reward when reaching goal, small penalty for all

other actions.

◮ Agent’s plan maximizes value: the sum of future rewards.

◮ Decision-theoretic planning successfully handles noise in

acting and sensing.



Decision-theoretic planning

Plan #1:

Reward:
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Values of this plan:
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Decision-theoretic planning

Optimal values (encode optimal plan):

Reward:

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1



Markov Decision Processes



Sequential decision making under uncertainty

◮ Uncertainty is abundant in real-world planning domains.

◮ Bayesian approach⇒ probabilistic models.

Main assumptions:

Sequential decisions: problems are formulated as a sequence

of “independent” decisions;

Markovian environment: the state at time t depends only on

the events at time t − 1;

Evaluative feedback: use of a reinforcement signal as

performance measure (reinforcement learning);



Transition model

◮ For instance, robot motion

is inaccurate.

◮ Transitions between states

are stochastic.

◮ p(s′|s, a) is the probability

to jump from state s to

state s′ after taking

action a.

?
??
?

?



MDP Agent

replacements environment

action a

obs. s

reward r

π

state s
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MDP Agent

replacements environment

action a

obs. s

reward r

π

state s

R(s, a)



Optimality criterion

For instance, agent should maximize the value

E
[ h∑

t=0

γtRt

]
, (1)

where

◮ h is the planning horizon, can be finite or∞

◮ γ is a discount rate, 0 ≤ γ < 1

Reward hypothesis (Sutton and Barto, 1998):

All goals and purposes can be formulated as the maximization

of the cumulative sum of a received scalar signal (reward).



Discrete MDP model

Discrete Markov Decision Process model (Puterman, 1994;

Bertsekas, 2000):

◮ Time t is discrete.

◮ State space S.

◮ Set of actions A.

◮ Reward function R : S × A 7→ R.

◮ Transition model p(s′|s, a), Ta : S × A 7→ ∆(S).

◮ Initial state s0 is drawn from ∆(S).

The Markov property entails that the next state st+1 only

depends on the previous state st and action at :

p(st+1|st , st−1, . . . , s0, at , at−1, . . . , a0) = p(st+1|st , at). (2)



A simple problem

Problem:

An autonomous robot must learn how to transport material from

a deposit to a building facility.

Move Left/Move Right

Load/Unload

1 2 3

Material Building facility

(thanks to F. Melo)



Load/Unload as an MDP

Move Left/Move Right

Load/Unload

1 2 3

Material Building facility

◮ States: S = {1U , 2U , 3U , 1L, 2L, 3L};
1U Robot in position 1 (unloaded);

2U Robot in position 2 (unloaded);

3U Robot in position 3 (unloaded);

1L Robot in position 1 (loaded);

2L Robot in position 2 (loaded);

3L Robot in position 3 (loaded)

◮ Actions: A = {Left, Right, Load, Unload};



Load/Unload as an MDP (1)

◮ Transition probabilities: “Left”/“Right” move the robot in the

corresponding direction; “Load” loads material (only in

position 1); “Unload” unloads material (only in position 3).

Ex:

(2L,Right) → 3L;

(3L,Unload) → 3U ;

(1L,Unload) → 1L.

◮ Reward: We assign a reward of +10 for every unloaded

package (payment for the service).



Load/Unload as an MDP (2)

◮ For each action a ∈ A, Ta is a matrix.

Ex:

TRight =




0 1 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 1




◮ Recall: S = {1U , 2U , 3U , 1L, 2L, 3L}.



Load/Unload as an MDP (3)

◮ The reward R(s, a) can also be represented as a matrix

Ex:

R =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 +10




S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}



Policies and value

◮ Policy π: tells the agent how to act.

◮ A deterministic policy π : S 7→ A is a mapping from states

to actions.

◮ Value: how much reward E [
∑h

t=0 γ
tRt ] does the agent

expect to gather.

◮ Value denoted as Qπ(s, a): start in s, do a and follow π

afterwards.



Policies and value (1)

◮ Extracting a policy π from a value function Q is easy:

π(s) = arg max
a∈A

Q(s, a). (3)

◮ Optimal policy π∗: one that maximizes E [
∑h

t=0 γ
tRt ] (for

every state).

◮ In an infinite-horizon MDP there is always an optimal

deterministic stationary (time-independent) policy π∗.

◮ There can be many optimal policies π∗, but they all share

the same optimal value function Q∗.



Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




Q1 =




? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?




S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}
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Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.
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Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =




0 0 0 0

0 0 0 0
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0 0 0 0

0 0 0 0
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
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

S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}



Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):
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


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 10




Q2 =




? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?



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Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q1 =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 10




Q2 =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 ? 0 0

0 ? ? 10




S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}



Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q1 =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 10




Q2 =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 9.5 0 0

0 9.5 9.5 10




S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}



Dynamic programming

Iterations of dynamic programming (γ = 0.95):

Q5 =




0 0 8.57 0

0 0 0 0

0 0 0 0

8.57 9.03 8.57 8.57

8.57 9.5 9.03 9.03

9.03 9.5 9.5 10




S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}



Dynamic programming

Iterations of DP:

Q20 =




18.53 17.61 19.51 18.54

18.53 16.73 17.61 17.61

17.61 16.73 16.73 16.73

19.51 20.54 19.51 19.51

19.51 21.62 20.54 20.54

20.54 21.62 21.62 26.73




S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}



Dynamic programming

Final Q∗ and policy:

Q∗ =




30.75 29.21 32.37 30.75

30.75 27.75 29.21 29.21

29.21 27.75 27.75 27.75

32.37 34.07 32.37 32.37

32.37 35.86 34.07 34.07

34.07 35.86 35.86 37.75




π∗ =




Load

Left

Left

Right

Right

Unload






Value iteration

◮ Value iteration: successive approximation technique.

◮ Start with all values set to 0.

◮ In order to consider one step deeper into the future, i.e., to

compute V ∗
n+1 from V ∗

n :

Q∗
n+1(s, a) := R(s, a) + γ

∑

s′∈S

p(s′|s, a)max
a′∈A

Q∗
n(s

′, a′), (4)

which is known as the dynamic programming update or

Bellman backup.

◮ Bellman (1957) equation:

Q∗(s, a) = R(s, a) + γ
∑

s′∈S

p(s′|s, a)max
a′∈A

Q∗(s′, a′). (5)



Value iteration

Value iteration discussion:

◮ As n→∞, value iteration converges.

◮ Value iteration has converged when the largest update δ in

an iteration is below a certain threshold ǫ.

◮ Exhaustive sweeps are not required for convergence,

provided that in the limit all states are visited infinitely often.

◮ This can be exploited by backing up the most promising

states first, known as prioritized sweeping.



Q-learning

◮ Reinforcement-learning techniques learn from experience,

no knowledge of the model is required.

◮ Q-learning update:

Q(s, a) = (1− β) Q(s, a) + β
[
r + γ max

a′∈A
Q(s′, a′)

]
, (6)

where 0 < β ≤ 1 is a learning rate.



Q-learning

Q-learning discussion:

◮ Q-learning is guaranteed to converge to the optimal

Q-values if all Q(s, a) values are updated infinitely often.

◮ In order to make sure all actions will eventually be tried in

all states exploration is necessary.

◮ A common exploration method is to execute a random

action with small probability ǫ, which is known as ǫ-greedy

exploration.



Solution methods: MDPs

Model based

◮ Basic: dynamic programming (Bellman, 1957), value

iteration, policy iteration.

◮ Advanced: prioritized sweeping, function approximators.

Model free, reinforcement learning (Sutton and Barto, 1998)

◮ Basic: Q-learning, TD(λ), SARSA, actor-critic.

◮ Advanced: generalization in infinite state spaces,

exploration/exploitation issues.



POMDPs
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Beyond MDPs

◮ MDPs have been very successful, but requires to have an

observable Markovian state.

◮ Many domains this is impossible (or expensive) to obtain:

◮ Diagnosis (medical, maintenance)

◮ Robot navigation

◮ Tutoring

◮ Dialog systems

◮ Vision-based robotics

◮ Fault recovery



Observation model

◮ Imperfect sensors.

◮ Partially observable environment:
◮ Sensors are noisy.
◮ Sensors have a limited view.

◮ p(o|s′, a) is the probability the agent receives observation

o in state s′ after taking action a.
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POMDPs

Partially observable Markov decision processes (POMDPs)

(Kaelbling et al., 1998):

◮ Framework for agent planning under uncertainty.

◮ Typically assumes discrete sets of states S, actions A and

observations O.

◮ Transition model p(s′|s, a): models the effect of actions.

◮ Observation model p(o|s′, a): relates observations to

states.

◮ Task is defined by a reward model R(s, a).

◮ A planning horizon h (finite or∞).

◮ A discount rate 0 ≤ γ < 1.

◮ Goal is to compute plan, or policy π, that maximizes

long-term reward.
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Memory

◮ In POMDPs memory is required for optimal decision

making.

◮ In this non-observable example (Singh et al., 1994):

A B

goA goB

−r−r

goA, +r

goB, +r

Policy Value

MDP: optimal policy V =
∑∞

t=0 γ
t r = r

1−γ

POMDP: memoryless deterministic Vmax = r − γr
1−γ

POMDP: memoryless stochastic V = 0

POMDP: memory-based (optimal) Vmin = γr
1−γ
− r



Beliefs

Beliefs:

◮ The agent maintains a belief b(s) of being at state s.

◮ After action a ∈ A and observation o ∈ O the belief b(s)
can be updated using Bayes’ rule:

b′(s′) ∝ p(o|s′)
∑

s

p(s′|s, a)b(s)

◮ The belief vector is a Markov signal for the planning task.
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Belief update example

True situation:

Robot’s belief:

0

0.25

0.5

◮ Observations: door or corridor, 10% noise.

◮ Action: moves 3 (20%), 4 (60%), or 5 (20%) states.



MDP-based algorithms

◮ Exploit belief state, and use the MDP solution as a

heuristic.

◮ Most likely state (Cassandra et al., 1996):

πMLS(b) = π∗(arg maxs b(s)).

◮ QMDP (Littman et al., 1995):

πQMDP
(b) = arg maxa

∑
s b(s)Q∗(s, a).

C

I

A

A

D

+1
c

ba

a

0.5

0.5
b

c

a

ab

b

−1

(Parr and Russell, 1995)
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POMDPs as continuous-state MDPs

A belief-state POMDP can be treated as a continuous-state

MDP:

◮ Continuous state space ∆: a simplex in [0, 1]|S|−1.

◮ Stochastic Markovian transition model

p(bo
a |b, a) = p(o|b, a). This is the normalizer of Bayes’ rule.

◮ Reward function R(b, a) =
∑

s R(s, a)b(s). This is the

average reward with respect to b(s).

◮ The robot fully ‘observes’ the new belief-state bo
a after

executing a and observing o.
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Solving POMDPs

◮ A solution to a POMDP is a policy, i.e., a mapping

π : ∆ 7→ A from beliefs to actions.

◮ The optimal value V ∗ of a POMDP satisfies the Bellman

optimality equation V ∗ = HV ∗:

V ∗(b) = max
a

[
R(b, a) + γ

∑

o

p(o|b, a)V ∗(bo
a)
]

◮ Value iteration repeatedly applies Vn+1 = HVn starting

from an initial V0.

◮ Computing the optimal value function is a hard problem

(PSPACE-complete for finite horizon, undecidable for

infinite horizon).



Example V0

(1,0) (0,1)

R

1

0.5

0

α1

α2

α3

b
R(s, a) a1 a2 a3

s1 1.00 0.50 −0.25

s2 0.25 0.75 1.25



PWLC shape of Vn

◮ Like V0, Vn is as well piecewise linear and convex.

◮ Rewards R(b, a) = b · R(s, a) are linear functions of b.

Note that the value of a point b satisfies:

Vn+1(b) = max
a

[
b · R(s, a) + γ

∑

o

p(o|b, a)Vn(b
o
a)
]

which involves a maximization over (at least) the vectors

R(s, a).

◮ Intuitively: less uncertainty about the state (low-entropy

beliefs) means better decisions (thus higher value).



Exact value iteration

Value iteration computes a sequence of value function

estimates V1,V2, . . . ,Vn, using the POMDP backup operator H,

Vn+1 = HVn.

(1,0) (0,1)

V

−1

V1

V2

V3



Optimal value functions

The optimal value function of a (finite-horizon) POMDP is

piecewise linear and convex: V (b) = maxα b · α.
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Vector pruning

(1,0) (0,1)

V

b1 b2

α1

α2

α3

α4

α5

Linear program for pruning:

variables: ∀s ∈ S, b(s); x
maximize: x

subject to:

b · (α− α′) ≥ x , ∀α′ ∈ V , α′ 6= α

b ∈ ∆(S)



Optimal POMDP methods

Enumerate and prune:

◮ Most straightforward: Monahan (1982)’s enumeration

algorithm. Generates a maximum of |A||Vn|
|O| vectors at

each iteration, hence requires pruning.

◮ Incremental pruning (Zhang and Liu, 1996; Cassandra et al., 1997).

Search for witness points:

◮ One Pass (Sondik, 1971; Smallwood and Sondik, 1973).

◮ Relaxed Region, Linear Support (Cheng, 1988).

◮ Witness (Cassandra et al., 1994).



Sub-optimal techniques

◮ Grid-based approximations

(Drake, 1962; Lovejoy, 1991; Brafman, 1997; Zhou and Hansen, 2001; Bonet, 2002).

◮ Optimizing finite-state controllers

(Platzman, 1981; Hansen, 1998b; Poupart and Boutilier, 2004).

◮ Heuristic search in the belief tree

(Satia and Lave, 1973; Hansen, 1998a).

◮ Compression or clustering

(Roy et al., 2005; Poupart and Boutilier, 2003; Virin et al., 2007).

◮ Point-based techniques

(Pineau et al., 2003; Smith and Simmons, 2004; Spaan and Vlassis, 2005; Shani et al., 2007; Kurniawati

et al., 2008).

◮ Monte Carlo tree search

(Silver and Veness, 2010).



Point-based backup

◮ For finite horizon V ∗ is piecewise linear and convex, and

for infinite horizons V ∗ can be approximated arbitrary well

by a PWLC value function (Smallwood and Sondik, 1973).



Point-based backup

◮ For finite horizon V ∗ is piecewise linear and convex, and

for infinite horizons V ∗ can be approximated arbitrary well

by a PWLC value function (Smallwood and Sondik, 1973).

◮ Given value function Vn and a particular belief point b we

can easily compute the vector αb
n+1 of HVn such that

αb
n+1 = arg max

{αk
n+1

}k

b · αk
n+1,

where {αk
n+1}

|HVn|
k=1 is the (unknown) set of vectors for HVn.

We will denote this operation αb
n+1 = backup(b).



Point-based (approximate) methods

Point-based (approximate) value iteration plans only on a

limited set of reachable belief points:

1. Let the robot explore the environment.

2. Collect a set B of belief points.

3. Run approximate value iteration on B.



PERSEUS: randomized point-based VI
Idea: at every backup stage improve the value of all b ∈ B.
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PERSEUS: randomized point-based VI
Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V1
V4

b1 b2 b3b4 b5 b6 b7

(Spaan and Vlassis, 2005)



Sub-optimal techniques

◮ Grid-based approximations

(Drake, 1962; Lovejoy, 1991; Brafman, 1997; Zhou and Hansen, 2001; Bonet, 2002).

◮ Optimizing finite-state controllers

(Platzman, 1981; Hansen, 1998b; Poupart and Boutilier, 2004).

◮ Heuristic search in the belief tree

(Satia and Lave, 1973; Hansen, 1998a).

◮ Compression or clustering

(Roy et al., 2005; Poupart and Boutilier, 2003; Virin et al., 2007).

◮ Point-based techniques

(Pineau et al., 2003; Smith and Simmons, 2004; Spaan and Vlassis, 2005; Shani et al., 2007; Kurniawati

et al., 2008).

◮ Monte Carlo tree search

(Silver and Veness, 2010).



Multiagent Planning



Multiagent Systems (MASs)

Why MASs?
 If we can make intelligent agents, soon there will be 

many...
 Physically distributed systems: centralized solutions 

expensive and brittle.
 can potentially provide [Vlassis, 2007,Sycara, 1998]

 Speedup and efficiency
 Robustness and reliability (‘graceful degradation’)
 Scalability and flexibility (adding additional agents)



Example: Predator-Prey Domain

 Predator-Prey domain – still single agent!
 1 agent: the predator (blue)
 prey (red) is part of the 

environment
 on a torus ('wrap around world')

 Formalization:
 states (-3,4)
 actions N,W,S,E
 transitions probabilty of failing to move, prey moves
 rewards reward for capturing

??
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● Markovian state s...
● ...which is observed
● policy π maps states → actions
● Value function Q(s,a)
● Value iteration: way to compute it.



Partial Observability

 Now: partial observability
 E.g., limited range of sight

 MDP + observations
 explicit observations
 observation probabilities

 noisy observations
(detection probability)

o=' nothing '
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Partially Observable MDP (POMDP)

● reduction → continuous state MDP
(in which the belief is the state)

● Value iterations: 
● make use of α-vectors

(correspond to complete policies)
● perform pruning: eliminate dominated α's
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● reduction → continuous state MDP
(in which the belief is the state)

● Value iterations: 
● make use of α-vectors
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Multiagent MDP [Boutilier 1996]

● Differences with MDP
● n agents
● joint actions
● transitions and rewards depend on joint actions

● Solution:
● Treat as normal MDP with 1 'puppeteer agent'
● Optimal policy
● Every agent executes its part

a=〈a1,a2, ... ,an〉a=〈a1,a2, ... ,an〉

π(s)=aπ(s)=a

Catch: number of joint actions is exponential!
(but other than that, conceptually simple.)
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Multiple Agents &
Partial Observability

 Now: Both
 partial observability
 multiple agents

 Decentralized POMDPs
(Dec-POMDPs) [Bernstein et al. 2002]

 both 
 joint actions and 
 joint observations
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Multiple Agents &
Partial Observability

 Again we can make a reduction...

Dec-POMDPs → MPOMDP

(multiagent POMDP)

 'puppeteer' agent that 
 receives joint observations

 takes joint actions

 requires broadcasting observations!
 instantaneous, cost-free, noise-free communication → optimal

[Pynadath and Tambe 2002]

 Without such communication: no easy reduction.



The Dec-POMDP Model



Acting Based On Local 
Observations

 MPOMDP: Act on global information 
 Can be impractical:

 communication not possible
 significant cost (e.g battery power)

 not instantaneous or noise free
 scales poorly with number of agents!

 Alternative: act based only on local observations
 Other side of the spectrum: no communication at all
 (Also other intermediate approaches: delayed communication, 

stochastic delays)



Formal Model                      

 A Dec-POMDP 


 n  agents
 S  – set of states
 A  – set of joint actions

 P
T
 – transition function

 O  – set of joint observations

 P
O
 – observation function

 R  – reward function
 h   – horizon (finite)

〈S , A , PT ,O , PO , R ,h〉

a=〈a1,a2, ... ,an〉

o=〈o1,o2, ... , on〉

P(s '∣s , a)

P(o∣a , s ')

R (s , a)
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 small army large armyS – { s
L
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S
 }

A
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O
i
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Rewards
● 1 general attacks: he loses the battle
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S – { s
L
, s

S
 }

A
i
 – { (O)bserve, (A)ttack }

O
i
 – { (L)arge, (S)mall }

Rewards
● 1 general attacks: he loses the battle

● R(*,<A,O>) = -10
● Both generals Observe: small cost

● R(*,<O,O>) = -1
● Both Attack: depends on state

● R(s
L
,<A,A>) = -20

● R(s
R
,<A,A>) = +5

suppose h=3,
what do you think is optimal in 

this problem?



Off-line / On-line phases

 off-line planning, on-line execution is decentralized

Planning Phase Execution Phase

π=〈π1,π2〉



Policy Domain

 What do policies look like?
 In general histories → actions
 before: more compact representations...

 Now, this is difficult: no such representation known!

→ So we will be stuck with histories
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 What do policies look like?
 In general histories → actions
 before: more compact representations...

 Now, this is difficult: no such representation known!

→ So we will be stuck with histories
Most general, AOHs:

But: can restrict to
deterministic policies
→ only need OHs:

Most general, AOHs:

But: can restrict to
deterministic policies
→ only need OHs:

(ai
0,oi

1,ai
1 , ... , ai

t−1 , oi
t )(ai

0,oi
1,ai

1 , ... , ai
t−1 , oi

t )

o⃗i=(oi
1, ... ,oi

t)o⃗i=(oi
1, ... ,oi

t)
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There are a number of types of beliefs considered
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 compute b(s) using joint actions and observations
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No Compact Representation?

There are a number of types of beliefs considered
 Joint Belief, b(s)  (as in MPOMDP) [Pynadath and Tambe 2002]

 compute b(s) using joint actions and observations
 Problem: agents do not know those during execution

 Multiagent belief, b
i 
(s,q

-i 
) [Hansen et al. 2004]

 belief over (future) policies of other agents
 Need to be able to predict the other agents!

 for belief update P(s'|s,a
i
,a

-i
), P(o|a

i
,a

-i
,s'), and prediction of R(s,a

i
,a

-i
)

 form of those other policies? most general: 

 if they use beliefs? → infinite recursion of beliefs!

π j : o⃗ j→ a j
π j : o⃗ j→ a j



Goal of Planning

 Find the optimal joint policy 
 where individual policies map OHs to actions

 What is the optimal one? 
 Define value as the expected sum of rewards:

 optimal joint policy is one with maximal value
(can be more that achieve this)

π∗=〈π1,π2〉

πi :O⃗i → A i

V (π)=E [∑
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 where individual policies map OHs to actions
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π∗=〈π1,π2〉

πi :O⃗i → A i

V (π)=E [∑
t=0

h−1

R(s ,a) ∣ π ,b0]

Optimal policy for 2 generals, h=3

value=-2.86743

() --> observe
(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe

() --> observe
(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
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Optimal policy for 2 generals, h=3

value=-2.86743

() --> observe
(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe

() --> observe
(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe

conceptually: 

what should policy optimize to 
allow for good coordination (thus 

high value)

?



Coordination vs. Exploitation of 
Local Information

 Inherent trade-off

coordination vs. exploitation of local information

 Ignore own observations → 'open loop plan'
 E.g., “ATTACK on 2nd time step”

+ maximally predictable
-  low quality

 Ignore coordination
 E.g., compute an individual belief b

i 
(s)

and execute the MPOMDP policy
+ uses local information
-  likely to result in mis-coordination

 Optimal policy      should balance between these.

bi(s)=∑q−i

b(s , q−i)

π∗



Planning Methods



Brute Force Search 

 We can compute the value of a joint policy V(π)
 using a Bellman-like equation [Oliehoek 2012] 

 So the stupidest algorithm is:
 compute V(π), for all π
 select a π with maximum value

 Number of joint policies is huge!
(doubly exponential in horizon h)

 Clearly intractable...

h num. joint policies

1 4

2 64

3 16384

4 1.0737e+09

5 4.6117e+18

6 8.5071e+37

7 2.8948e+76

8 3.3520e+153
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No easy way out...

The problem is 
NEXP-complete [Bernstein et al. 2002]

 most likely (assuming EXP != NEXP) 
doubly exponential time required.

● Still, there are better algorithms that work better for 
at least some problems...

● Useful to understand what optimal really means!
(trying to compute it helps understanding)



Algorithmic Developments
 Dynamic Programming

 DP for POSGs/Dec-POMDPs [Hansen et al. 2004] 
 Improvements to exhaustive backup [Amato et al. 2009]

 Compression of values (LPC) [Boularias & Chaib-draa 2008]

 (Point-based) Memory bounded DP [Seuken & Zilberstein 2007a]

 Improvements to PB backup [Seuken & Zilberstein 2007b,  Carlin and 
Zilberstein, 2008; Dibangoye et al, 2009; Amato et al, 2009; Wu et al, 2010, etc.]

 Heuristic Search
 No backtracking: just most promising path

[Emery-Montemerlo et al. 2004, Oliehoek et al. 2008]

 Clustering of histories: reduce number of child nodes
[Oliehoek et al. 2009]

 Incremental expansion: avoid expanding all child nodes
[Spaan et al. 2011, Oliehoek et al., 2013]

 MILP [Aras and Dutech 2010]



State of The Art

To get an impression...
 Optimal solutions

 Improvements of MAA* lead to 
significant increases

 but problem dependent

 Approximate (no quality guarantees)
 MBDP: linear in horizon [Seuken & zilberstein 2007a]

 Rollout sampling extension: up to 20 agents  [Wu et al. 2010b]

 Transfer planning: use smaller problems to solve large 
(structured) problems (up to 1000) agents [Oliehoek 2010]

h MILP LPC GMAA-ICE*

4 72 534.9 0.04

6 - 46.43*

h MILP LPC GMAA-ICE*

5 25 – <0.01

500 – – 0.94*

dec-tiger – runtime (s)

broadcast channel runtime (s)
* excluding heuristic



Communication
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Frameworks for acting optimally given:

◮ Limited sensing.

◮ Stochastic environments.



POMDPs vs. Dec-POMDPs

Frameworks for acting optimally given:

◮ Limited sensing.

◮ Stochastic environments.

Dec-POMDPs:

◮ Decentralized execution.

◮ Usually centralized, off-line planning.

◮ No common state estimate, no joint belief.

◮ Optimal policies based on individual observation histories.

◮ NEXP-Complete, doubly-exponential in the horizon.



Adding communication

◮ Implicit communication in Dec-POMDPs.
◮ Agent actions affect the state which affects

other agents’ observations.

◮ Explicit communication can be added as well.
◮ Equivalent to Dec-POMDP (Goldman and Zilberstein,

2004).
◮ Information sharing→ can reduce complexity

◮ Issues
◮ What to communicate and to whom?
◮ When to coordinate?

◮ Semantics predominantly predefined.



Communication and interdependence

Independent 

POMDPs
Dec-POMDP

Multi-agent 

POMDP

Dec-POMDP

with 

Comms
Auctioned 

POMDPs

Low High

None

Perfect

Interdependence

C
o
m
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n
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Communication – Outline

1. Optimizing semantics (Spaan et al., 2006)

◮ Learning the meaning of messages

2. Multiagent POMDPs with delayed communication (Spaan et al.,

2008), (Oliehoek and Spaan, 2012a)

◮ Planning with stochastically delayed information sharing

3. Offline communication policies for factored multiagent

POMDPs (Messias et al., 2011)

◮ Planning when communication can be reduced

4. Event-driven models (Messias et al., 2013)

◮ Planning for asynchronous execution



Optimizing semantics

Learning the meaning of messages



Example heaven or hell

◮ Task: meet in heaven.

◮ Priest knows the location

of heaven.

Heaven?
Hell?

Heaven?
Hell?
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Proposed model (Spaan et al., 2006)

Features:

Decentralized: Each agent considers only its own local state

plus some uncontrollable state features, shared by

all agents.

⇒ avoid computing an (approximate) solution of

the centralized planning problem

Communication Semantics of sending a particular message

are part of the optimization problem.

⇒ communication is an integral part of an

agent’s reasoning, not an add-on.

Environment The agents inhabit a stochastic environment that

is only partially observable to them.



Proposed model: discussion

◮ Agent i ’s policy πi maps a belief over its local state (s0, si)
to an action (as in a POMDP).

◮ A message sent by an agent i as part of its action is

received by agent j at the next timestep as part of its

observation.

◮ Agent j knows πi

◮ a message conveys information about the shared state S0.

◮ Information is represented in agent i ’s observation model.



Communication example
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Agent 1 just moved to the Priest location.



Communication example
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Agent 1 observes heaven-left and executes south/send_1.



Communication example

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�������
�������
�������
�������

�������
�������
�������
�������

������
������
������
������

������
������
������
������

��������

�������
�������
�������
�������

heaven
left

heaven heaven heaven
left rightright

1

0.5

0
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Agent 2 observes no-walls/received_1 and executes west.



POMDP model for a single agent

◮ Fixed policies of other agents can be treated as part of the

environment.

◮ Agent j ’s policy πj influences agent i ’s POMDP model:

◮ Observation model through communication.

◮ Reward function through joint reward.

◮ Constructing a POMDP model for i requires statistics p(sj)
and p(aj |sj).

◮ Approximated by simulating {πi , πj}.



Delayed communication

Planning with stochastically delayed information sharing



Multiagent POMDPs with delayed communication
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Instantaneous communication
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Instantaneous communication

◮ Instantaneous, perfect communication reduces a

Dec-POMDP to a POMDP. (Pynadath and Tambe, 2002)

◮ Observation sharing→ each agent knows belief bt at

time t .

◮ Piecewise-linear and convex (PWLC) value function.

◮ But this synchronization step takes time.

time

}

}

is common knowledge

st

st+1

oi

oi

oj

oj

ai

aj

bt



Delayed communication

◮ But what if communication is not instantaneous?

◮ Delayed communication is useful in several settings:
◮ Smart protection schemes
◮ Multi-robot systems
◮ Distributed video surveillance
◮ Upper bound on Dec-POMDP value function (Oliehoek et al., 2008)



Delayed communication

time

} decision
interval

} decision
interval

agent i agent j
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Fixed delay communication

◮ Each agent knows the last commonly known bt−k , k > 0.

◮ If k = 1, the optimal value function is PWLC. (Hsu and Marcus, 1982)

◮ Equal to the QBG value function (Oliehoek et al., 2008)

◮ Otherwise the value function is not separable (Varaiya and Walrand,

1978)

◮ It is not a function over the joint belief space.

◮ But what if the delay can vary?



Stochastic communication delays (Spaan et al., 2008)

◮ Probability that synchronization succeeds within a

particular stage i : piTD(s)

◮ Optimal value function:

Q∗
SD = R + p0TDF0TD + p1TDF1TD + p2TDF2TD + . . . ,

where FiTD is the exp. future reward given delay i .

◮ We assume during planning that delay is at most 1 step:

pD = p1TD + p2TD + · · · = 1− p0TD,

and define an approximate value function as

Q̃∗
SD = R + p0TDF0TD + pDF1TD.

◮ We prove that Q̃∗
SD is PWLC over the joint belief space.



Algorithms

Algorithms

◮ Point-based approximate POMDP techniques transfer. (Spaan

et al., 2008)

◮ Exhaustive backups of the 1TD delay value function can be

sped up by tree-based pruning. (Oliehoek and Spaan, 2012b)

◮ For k > 1, we propose an online algorithm similar to

Dec-COMM. (Roth et al., 2005)

Simulation results

◮ The policies consider potential future communication

capabilities.



Experimental results

Meet in corner

S

G CCW CCW

CCWCW

CW CW

◮ The CW route is cheaper, and with uniform p0TD it is

chosen.

◮ We set p0TD(s) = 0, ∀s ∈ CW and to 1 everywhere else.

◮ Now the agents choose the CCW route, leading to higher

payoff.



Experimental results

Policies computed for a specific value of p0TD, but evaluated

under different values of p0TD.

Meet in corner (large)
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Offline communication policies

Planning when communication can be reduced



Exploiting local interactions

◮ Real-world domains have structure that can be exploited.
◮ Factored models.

◮ Localized interactions can lead to reduced communication.
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◮ Localized interactions can lead to reduced communication.



Factored MPOMDPs
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Relay example

◮ State space: S = X1 × X2 where X1 = {l1, l2}
X2 = {r1, r2} ;

◮ Actions: A1 = A2 = {shuffle, exchange, sense/noop};

◮ Observations: O1 = O2 = {door, wall, idle};

◮ Agents should exchange when both are near the doorway.

◮ Unsuccessful exchanges are penalized.

R1

R2L2

L1

D

D

1

2

shuffle

exchange noop

X1

X2

l1 l2

r1 r2



Factored Multiagent POMDPs

◮ In Multiagent POMDPs, joint beliefs map to joint actions.

◮ It is advantageous to factor the belief state itself. (Messias et al.,

2011)

◮ Agents maintain belief states over locally relevant factors.
◮ Joint belief is approximated in factorized form.

◮ Multiagent POMDP policies are mapped to individual belief
spaces

◮ Query communication is used when other agents’ factors

are required.

◮ Extends ideas of Roth et al. (2007) to the MPOMDP

setting.



Linear and local supports of the value function

Linear supports: Local supports:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

b1(L1)

Shuffle
Exchange

Sense

R1

R2L2

L1

D

D

1

2

shuffle; exchange; sense/noop.



Event-driven models

Planning for asynchronous execution



Discrete Multiagent Markov Decision Processes

Often multiagent decision-theoretic models are discrete:

◮ Discrete state space S

◮ Discrete action space A

◮ Policies are step-based,

abstract w.r.t. time:

π(s) = {δ1(s), . . . , δh(s)}

◮ Communication required

if only local states can

be observed.

a1 a2

Agent 1 Agent 2

World State
(discrete)

Pr(s′|s, a)

R(s′, a)



In the Real World...
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Real-Time Execution Strategies
Synchronous Execution:

0 T 2T 3T 4T

Agent 1

Agent 2

a(3)a(2)a(0)

a(0) a(1) a(2)

a(1)

a(3)

s0 s1 s2 s3T + δ



Real-Time Execution Strategies
Synchronous Execution:

0 T 2T 3T 4T

Agent 1

Agent 2

a(3)a(2)a(0)

a(0) a(1) a(2)

a(1)

a(3)

s0 s1 s2 s3T + δ

Event-Driven (Asynchronous) Execution:

0 te1

Agent 1

Agent 2

a(0)

a(0)

a(2)

a(2)

a(1)

a(1)

a(3)

a(3)

s0 s1 s2 s3

te2 te3



Semi-Markov Decision Processes

SMDP: Extension of a discrete MDP with a temporal

distributions f (s, a, s′):

p(t , s′|s, a) = p(t |s, a, s′)Pr(s′|s, a)

= f (s, a, s′)T (s, a, s′)

t

p(t|s, a, s′) World State

R(s, a)

c(s, a, s′)

a



Generalized Semi-Markov Decision Processes

◮ Generalized SMDPs (Younes and

Simmons, 2004)

◮ State transitions abstracted as

events, e ∈ E .
◮ Transition probabilities also

depend on the history of

events.

◮ We apply a GSMDP-based

solution to a team of real robots.

(Messias et al., 2013)

◮ Extension to Partially-Observable

domains

s1

s2 s3

t t

p(t|s2, ~en) p(t|s3, ~en)

a1 a2

P
r(
s 2
|s
1
, a
) Pr(s

3 |s
1 ,
a)



Experimental Setup

◮ A cooperative decision-making problem for two robots;

◮ Implemented both as a GSMDP and a synchronous MDP

with configurable decision rate→ |S| = 126, |A| = 36;

◮ Results both with realistic physics-based simulation and

with real robots.



Robot Results - Video



Combined Results - Data

Combined results:
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Simulation Results

MDP, T = 4s:

0 50 100 150
0

5

10

15

time, t (s)D
is

ta
n

c
e
 t

o
 t

h
e
 G

o
a
l,

 d
 (

m
)

0 50 100 150
!100

0

100

200

Jo
in

t 
R

e
w

a
rd

GSMDP

0 50 100 150
0

5

10

15

time, t (s)D
is

ta
n

c
e
 t

o
 t

h
e
 G

o
a
l,

 d
 (

m
)

0 50 100 150
!100

0

100

200

Jo
in

t 
R

e
w

a
rd



Models and algorithms using communication

◮ Analysis of possible communication models and

complexity results (Pynadath and Tambe, 2002) (Goldman and Zilberstein, 2004)
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Models and algorithms using communication

◮ Analysis of possible communication models and

complexity results (Pynadath and Tambe, 2002) (Goldman and Zilberstein, 2004)

◮ Myopic communication in transition independent

Dec-MDPs (Becker et al., 2009)

◮ Reasoning about run-time synchronization decisions (Nair

et al., 2004), (Roth et al., 2005)

◮ Exploiting factored Dec-MDP representations (Roth et al., 2007)

◮ Multi-robot cooperation with auctioned POMDPs (Capitán et al.,

2013)



Communication – Conclusions

◮ Multiagent planning under

uncertainty can exploit

communication.

◮ Real-world systems often can

communicate, but not perfectly.

◮ Sparse dependencies can lead to

sparse communication needs.
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+ DDF

MPOMDP

Delayed

Comm

Particular issues:

1. Learning semantics

2. Deal with imperfect communication

3. Minimizing communication

4. Asynchronous execution



Conclusions

◮ Decision-theoretic models
provide a principled framework
for planning under uncertainty

◮ Acting and sensing uncertainty
◮ Single and multiple agents
◮ Communication

◮ Software and solvers available

Current challenges

◮ Identifying structure in domains or policies, e.g., influences

◮ Considering richer communication models



Further reading

◮ Textbook on reinforcement learning
◮ R. S. Sutton and A. G. Barto. “Reinforcement Learning: An

Introduction”. MIT Press, 1998.

◮ Recent book containing chapters on many aspects of

decision-theoretic planning:

◮ M. Wiering and M. van Otterlo, editors, “Reinforcement

Learning: State of the Art”, Springer, 2012.

◮ Software and other resources:

MultiAgentDecisionProcess toolbox

http://masplan.org

http://masplan.org
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