
Decision-theoretic approaches to planning,

coordination and communication in

multiagent systems

Matthijs Spaan1 Frans Oliehoek2 Stefan Witwicki3

1Delft University of Technology
2U. of Liverpool & U. of Amsterdam

3EPFL

ESSENCE Autumn School
Ischia, Italy

October 29, 2014

Introduction

Introduction

◮ Goal in Artificial Intelligence: to build intelligent agents.

◮ Our definition of “intelligent”: perform an assigned task as

well as possible.

◮ Problem: how to act?

◮ We will explicitly model uncertainty.

Motivation

◮ Intelligent distributed systems are becoming ubiquitous:
◮ Smart energy grid infrastructure
◮ Surveillance camera networks
◮ Autonomous guided vehicles, vehicular networks
◮ Internet or smart phone applications

◮ Devices can sense, compute, act and interact.

Motivation

◮ Intelligent distributed systems are becoming ubiquitous:
◮ Smart energy grid infrastructure
◮ Surveillance camera networks
◮ Autonomous guided vehicles, vehicular networks
◮ Internet or smart phone applications

◮ Devices can sense, compute, act and interact.

◮ Growing need for scalable and flexible multiagent planning.

◮ Key issue: uncertainty

Outline

Before the break:

1. Introduction to decision making under uncertainty

2. Planning under action uncertainty (MDPs)

3. Planning under sensing uncertainty (POMDPs)

After the break:

1. Multiagent planning (Dec-POMDPs)

2. Communication

Agents

◮ An agent is a (rational) decision maker who is

able to perceive its external (physical)

environment and act autonomously upon it

(Russell and Norvig, 2003).

◮ Rationality means reaching the optimum of a

performance measure.

◮ Examples: humans, robots, some software

programs.

Agents

environment

agent

action

observation

state

◮ It is useful to think of agents as being involved in a

perception-action loop with their environment.

◮ But how do we make the right decisions?

Planning

Planning:

◮ A plan tells an agent how to act.

◮ For instance
◮ A sequence of actions to reach a goal.
◮ What to do in a particular situation.

◮ We need to model:
◮ the agent’s actions
◮ its environment
◮ its task

We will model planning as a sequence of decisions.

Classic planning

◮ Classic planning: sequence of actions from start to goal.

◮ Task: robot should get to gold as quickly as possible.

◮ Actions: → ↓ ← ↑

◮ Limitations:
◮ New plan for each start state.
◮ Environment is deterministic.

Classic planning

◮ Classic planning: sequence of actions from start to goal.

◮ Task: robot should get to gold as quickly as possible.

◮ Actions: → ↓ ← ↑

◮ Limitations:
◮ New plan for each start state.
◮ Environment is deterministic.

◮ Three optimal plans: →→ ↓,→ ↓ →, ↓ → →.

Conditional planning

◮ Assume our robot has noisy actions (wheel slip,

overshoot).

◮ We need conditional plans.

◮ Map situations to actions.

Decision-theoretic planning

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1

◮ Positive reward when reaching goal, small penalty for all

other actions.

◮ Agent’s plan maximizes value: the sum of future rewards.

◮ Decision-theoretic planning successfully handles noise in

acting and sensing.

Decision-theoretic planning

Plan #1:

Reward:

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1

Decision-theoretic planning

Values of this plan:

Reward:

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1

Decision-theoretic planning

Values of this plan:

Reward:

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1

Decision-theoretic planning

Plan #2:

Reward:

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1

Decision-theoretic planning

Values of this plan:

Reward:

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1

Decision-theoretic planning

Values of this plan:

Reward:

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1

Decision-theoretic planning

Optimal values (encode optimal plan):

Reward:

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1

Markov Decision Processes

Sequential decision making under uncertainty

◮ Uncertainty is abundant in real-world planning domains.

◮ Bayesian approach⇒ probabilistic models.

Main assumptions:

Sequential decisions: problems are formulated as a sequence

of “independent” decisions;

Markovian environment: the state at time t depends only on

the events at time t − 1;

Evaluative feedback: use of a reinforcement signal as

performance measure (reinforcement learning);

Transition model

◮ For instance, robot motion

is inaccurate.

◮ Transitions between states

are stochastic.

◮ p(s′|s, a) is the probability

to jump from state s to

state s′ after taking

action a.

?
??
?

?

MDP Agent

replacements environment

action a

obs. s

reward r

π

state s

MDP Agent

replacements environment

action a

obs. s

reward r

π

state s

p(s′|s, a)

MDP Agent

replacements environment

action a

obs. s

reward r

π

state s

R(s, a)

Optimality criterion

For instance, agent should maximize the value

E
[h∑

t=0

γtRt

]
, (1)

where

◮ h is the planning horizon, can be finite or∞

◮ γ is a discount rate, 0 ≤ γ < 1

Reward hypothesis (Sutton and Barto, 1998):

All goals and purposes can be formulated as the maximization

of the cumulative sum of a received scalar signal (reward).

Discrete MDP model

Discrete Markov Decision Process model (Puterman, 1994;

Bertsekas, 2000):

◮ Time t is discrete.

◮ State space S.

◮ Set of actions A.

◮ Reward function R : S × A 7→ R.

◮ Transition model p(s′|s, a), Ta : S × A 7→ ∆(S).

◮ Initial state s0 is drawn from ∆(S).

The Markov property entails that the next state st+1 only

depends on the previous state st and action at :

p(st+1|st , st−1, . . . , s0, at , at−1, . . . , a0) = p(st+1|st , at). (2)

A simple problem

Problem:

An autonomous robot must learn how to transport material from

a deposit to a building facility.

Move Left/Move Right

Load/Unload

1 2 3

Material Building facility

(thanks to F. Melo)

Load/Unload as an MDP

Move Left/Move Right

Load/Unload

1 2 3

Material Building facility

◮ States: S = {1U , 2U , 3U , 1L, 2L, 3L};
1U Robot in position 1 (unloaded);

2U Robot in position 2 (unloaded);

3U Robot in position 3 (unloaded);

1L Robot in position 1 (loaded);

2L Robot in position 2 (loaded);

3L Robot in position 3 (loaded)

◮ Actions: A = {Left, Right, Load, Unload};

Load/Unload as an MDP (1)

◮ Transition probabilities: “Left”/“Right” move the robot in the

corresponding direction; “Load” loads material (only in

position 1); “Unload” unloads material (only in position 3).

Ex:

(2L,Right) → 3L;

(3L,Unload) → 3U ;

(1L,Unload) → 1L.

◮ Reward: We assign a reward of +10 for every unloaded

package (payment for the service).

Load/Unload as an MDP (2)

◮ For each action a ∈ A, Ta is a matrix.

Ex:

TRight =




0 1 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 1




◮ Recall: S = {1U , 2U , 3U , 1L, 2L, 3L}.

Load/Unload as an MDP (3)

◮ The reward R(s, a) can also be represented as a matrix

Ex:

R =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 +10




S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Policies and value

◮ Policy π: tells the agent how to act.

◮ A deterministic policy π : S 7→ A is a mapping from states

to actions.

◮ Value: how much reward E [
∑h

t=0 γ
tRt] does the agent

expect to gather.

◮ Value denoted as Qπ(s, a): start in s, do a and follow π

afterwards.

Policies and value (1)

◮ Extracting a policy π from a value function Q is easy:

π(s) = arg max
a∈A

Q(s, a). (3)

◮ Optimal policy π∗: one that maximizes E [
∑h

t=0 γ
tRt] (for

every state).

◮ In an infinite-horizon MDP there is always an optimal

deterministic stationary (time-independent) policy π∗.

◮ There can be many optimal policies π∗, but they all share

the same optimal value function Q∗.

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




Q1 =




? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?




S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




Q1 =




? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?




S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




Q1 =




0 ? ? ?
0 ? ? ?
0 ? ? ?
0 ? ? ?
0 ? ? ?
0 ? ? ?




S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




Q1 =




0 ? ? ?
0 ? ? ?
0 ? ? ?
0 ? ? ?
0 ? ? ?
0 ? ? ?




S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




Q1 =




0 0 ? ?
0 0 ? ?
0 0 ? ?
0 0 ? ?
0 0 ? ?
0 0 ? ?




S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




Q1 =




0 0 ? ?
0 0 ? ?
0 0 ? ?
0 0 ? ?
0 0 ? ?
0 0 ? ?




S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




Q1 =




0 0 0 ?
0 0 0 ?
0 0 0 ?
0 0 0 ?
0 0 0 ?
0 0 0 ?




S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




Q1 =




0 0 0 ?

0 0 0 ?

0 0 0 ?

0 0 0 ?

0 0 0 ?

0 0 0 ?




S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




Q1 =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 10




S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q1 =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 10




Q2 =




? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?




S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q1 =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 10




Q2 =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 ? 0 0

0 ? ? 10




S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q1 =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 10




Q2 =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 9.5 0 0

0 9.5 9.5 10




S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Dynamic programming

Iterations of dynamic programming (γ = 0.95):

Q5 =




0 0 8.57 0

0 0 0 0

0 0 0 0

8.57 9.03 8.57 8.57

8.57 9.5 9.03 9.03

9.03 9.5 9.5 10




S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Dynamic programming

Iterations of DP:

Q20 =




18.53 17.61 19.51 18.54

18.53 16.73 17.61 17.61

17.61 16.73 16.73 16.73

19.51 20.54 19.51 19.51

19.51 21.62 20.54 20.54

20.54 21.62 21.62 26.73




S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Dynamic programming

Final Q∗ and policy:

Q∗ =




30.75 29.21 32.37 30.75

30.75 27.75 29.21 29.21

29.21 27.75 27.75 27.75

32.37 34.07 32.37 32.37

32.37 35.86 34.07 34.07

34.07 35.86 35.86 37.75




π∗ =




Load

Left

Left

Right

Right

Unload




Value iteration

◮ Value iteration: successive approximation technique.

◮ Start with all values set to 0.

◮ In order to consider one step deeper into the future, i.e., to

compute V ∗
n+1 from V ∗

n :

Q∗
n+1(s, a) := R(s, a) + γ

∑

s′∈S

p(s′|s, a)max
a′∈A

Q∗
n(s

′, a′), (4)

which is known as the dynamic programming update or

Bellman backup.

◮ Bellman (1957) equation:

Q∗(s, a) = R(s, a) + γ
∑

s′∈S

p(s′|s, a)max
a′∈A

Q∗(s′, a′). (5)

Value iteration

Value iteration discussion:

◮ As n→∞, value iteration converges.

◮ Value iteration has converged when the largest update δ in

an iteration is below a certain threshold ǫ.

◮ Exhaustive sweeps are not required for convergence,

provided that in the limit all states are visited infinitely often.

◮ This can be exploited by backing up the most promising

states first, known as prioritized sweeping.

Q-learning

◮ Reinforcement-learning techniques learn from experience,

no knowledge of the model is required.

◮ Q-learning update:

Q(s, a) = (1− β) Q(s, a) + β
[
r + γ max

a′∈A
Q(s′, a′)

]
, (6)

where 0 < β ≤ 1 is a learning rate.

Q-learning

Q-learning discussion:

◮ Q-learning is guaranteed to converge to the optimal

Q-values if all Q(s, a) values are updated infinitely often.

◮ In order to make sure all actions will eventually be tried in

all states exploration is necessary.

◮ A common exploration method is to execute a random

action with small probability ǫ, which is known as ǫ-greedy

exploration.

Solution methods: MDPs

Model based

◮ Basic: dynamic programming (Bellman, 1957), value

iteration, policy iteration.

◮ Advanced: prioritized sweeping, function approximators.

Model free, reinforcement learning (Sutton and Barto, 1998)

◮ Basic: Q-learning, TD(λ), SARSA, actor-critic.

◮ Advanced: generalization in infinite state spaces,

exploration/exploitation issues.

POMDPs

Beyond MDPs

◮ MDPs have been very successful, but requires to have an

observable Markovian state.

◮ Many domains this is impossible (or expensive) to obtain:

◮ Diagnosis (medical, maintenance)

Beyond MDPs

◮ MDPs have been very successful, but requires to have an

observable Markovian state.

◮ Many domains this is impossible (or expensive) to obtain:

◮ Diagnosis (medical, maintenance)

◮ Robot navigation

Beyond MDPs

◮ MDPs have been very successful, but requires to have an

observable Markovian state.

◮ Many domains this is impossible (or expensive) to obtain:

◮ Diagnosis (medical, maintenance)

◮ Robot navigation

◮ Tutoring

Beyond MDPs

◮ MDPs have been very successful, but requires to have an

observable Markovian state.

◮ Many domains this is impossible (or expensive) to obtain:

◮ Diagnosis (medical, maintenance)

◮ Robot navigation

◮ Tutoring

◮ Dialog systems

Beyond MDPs

◮ MDPs have been very successful, but requires to have an

observable Markovian state.

◮ Many domains this is impossible (or expensive) to obtain:

◮ Diagnosis (medical, maintenance)

◮ Robot navigation

◮ Tutoring

◮ Dialog systems

◮ Vision-based robotics

Beyond MDPs

◮ MDPs have been very successful, but requires to have an

observable Markovian state.

◮ Many domains this is impossible (or expensive) to obtain:

◮ Diagnosis (medical, maintenance)

◮ Robot navigation

◮ Tutoring

◮ Dialog systems

◮ Vision-based robotics

◮ Fault recovery

Observation model

◮ Imperfect sensors.

◮ Partially observable environment:
◮ Sensors are noisy.
◮ Sensors have a limited view.

◮ p(o|s′, a) is the probability the agent receives observation

o in state s′ after taking action a.

POMDP Agent

replacements environment

action a

obs. o

reward r

π

state s

POMDP Agent

replacements environment

action a

obs. o

reward r

π

state s

p(s′|s, a)

POMDP Agent

replacements environment

action a

obs. o

reward r

π

state s

p(o|s′, a)

POMDP Agent

replacements environment

action a

obs. o

reward r

π

state s

R(s, a)

POMDPs

Partially observable Markov decision processes (POMDPs)

(Kaelbling et al., 1998):

◮ Framework for agent planning under uncertainty.

POMDPs

Partially observable Markov decision processes (POMDPs)

(Kaelbling et al., 1998):

◮ Framework for agent planning under uncertainty.

◮ Typically assumes discrete sets of states S, actions A and

observations O.

POMDPs

Partially observable Markov decision processes (POMDPs)

(Kaelbling et al., 1998):

◮ Framework for agent planning under uncertainty.

◮ Typically assumes discrete sets of states S, actions A and

observations O.

◮ Transition model p(s′|s, a): models the effect of actions.

POMDPs

Partially observable Markov decision processes (POMDPs)

(Kaelbling et al., 1998):

◮ Framework for agent planning under uncertainty.

◮ Typically assumes discrete sets of states S, actions A and

observations O.

◮ Transition model p(s′|s, a): models the effect of actions.

◮ Observation model p(o|s′, a): relates observations to

states.

POMDPs

Partially observable Markov decision processes (POMDPs)

(Kaelbling et al., 1998):

◮ Framework for agent planning under uncertainty.

◮ Typically assumes discrete sets of states S, actions A and

observations O.

◮ Transition model p(s′|s, a): models the effect of actions.

◮ Observation model p(o|s′, a): relates observations to

states.

◮ Task is defined by a reward model R(s, a).

POMDPs

Partially observable Markov decision processes (POMDPs)

(Kaelbling et al., 1998):

◮ Framework for agent planning under uncertainty.

◮ Typically assumes discrete sets of states S, actions A and

observations O.

◮ Transition model p(s′|s, a): models the effect of actions.

◮ Observation model p(o|s′, a): relates observations to

states.

◮ Task is defined by a reward model R(s, a).

◮ A planning horizon h (finite or∞).

POMDPs

Partially observable Markov decision processes (POMDPs)

(Kaelbling et al., 1998):

◮ Framework for agent planning under uncertainty.

◮ Typically assumes discrete sets of states S, actions A and

observations O.

◮ Transition model p(s′|s, a): models the effect of actions.

◮ Observation model p(o|s′, a): relates observations to

states.

◮ Task is defined by a reward model R(s, a).

◮ A planning horizon h (finite or∞).

◮ A discount rate 0 ≤ γ < 1.

POMDPs

Partially observable Markov decision processes (POMDPs)

(Kaelbling et al., 1998):

◮ Framework for agent planning under uncertainty.

◮ Typically assumes discrete sets of states S, actions A and

observations O.

◮ Transition model p(s′|s, a): models the effect of actions.

◮ Observation model p(o|s′, a): relates observations to

states.

◮ Task is defined by a reward model R(s, a).

◮ A planning horizon h (finite or∞).

◮ A discount rate 0 ≤ γ < 1.

◮ Goal is to compute plan, or policy π, that maximizes

long-term reward.

Memory

◮ In POMDPs memory is required for optimal decision

making.

◮ In this non-observable example (Singh et al., 1994):

a2,

A B

goA goB

−r−r

goA, +r

goB, +r

Memory

◮ In POMDPs memory is required for optimal decision

making.

◮ In this non-observable example (Singh et al., 1994):

A B

goA goB

−r−r

goA, +r

goB, +r

Policy Value

MDP: optimal policy

POMDP: memoryless deterministic

POMDP: memoryless stochastic

POMDP: memory-based (optimal)

Memory

◮ In POMDPs memory is required for optimal decision

making.

◮ In this non-observable example (Singh et al., 1994):

A B

goA goB

−r−r

goA, +r

goB, +r

Policy Value

MDP: optimal policy V =
∑∞

t=0 γ
t r = r

1−γ

POMDP: memoryless deterministic

POMDP: memoryless stochastic

POMDP: memory-based (optimal)

Memory

◮ In POMDPs memory is required for optimal decision

making.

◮ In this non-observable example (Singh et al., 1994):

A B

goA goB

−r−r

goA, +r

goB, +r

Policy Value

MDP: optimal policy V =
∑∞

t=0 γ
t r = r

1−γ

POMDP: memoryless deterministic Vmax = r − γr
1−γ

POMDP: memoryless stochastic

POMDP: memory-based (optimal)

Memory

◮ In POMDPs memory is required for optimal decision

making.

◮ In this non-observable example (Singh et al., 1994):

A B

goA goB

−r−r

goA, +r

goB, +r

Policy Value

MDP: optimal policy V =
∑∞

t=0 γ
t r = r

1−γ

POMDP: memoryless deterministic Vmax = r − γr
1−γ

POMDP: memoryless stochastic V = 0

POMDP: memory-based (optimal)

Memory

◮ In POMDPs memory is required for optimal decision

making.

◮ In this non-observable example (Singh et al., 1994):

A B

goA goB

−r−r

goA, +r

goB, +r

Policy Value

MDP: optimal policy V =
∑∞

t=0 γ
t r = r

1−γ

POMDP: memoryless deterministic Vmax = r − γr
1−γ

POMDP: memoryless stochastic V = 0

POMDP: memory-based (optimal) Vmin = γr
1−γ
− r

Beliefs

Beliefs:

◮ The agent maintains a belief b(s) of being at state s.

◮ After action a ∈ A and observation o ∈ O the belief b(s)
can be updated using Bayes’ rule:

b′(s′) ∝ p(o|s′)
∑

s

p(s′|s, a)b(s)

◮ The belief vector is a Markov signal for the planning task.

Belief update example

True situation:

Robot’s belief:

0

0.25

0.5

◮ Observations: door or corridor, 10% noise.

◮ Action: moves 3 (20%), 4 (60%), or 5 (20%) states.

Belief update example

True situation:

Robot’s belief:

0

0.25

0.5

◮ Observations: door or corridor, 10% noise.

◮ Action: moves 3 (20%), 4 (60%), or 5 (20%) states.

Belief update example

True situation:

Robot’s belief:

?
0

0.25

0.5

◮ Observations: door or corridor, 10% noise.

◮ Action: moves 3 (20%), 4 (60%), or 5 (20%) states.

Belief update example

True situation:

Robot’s belief:

0

0.25

0.5

◮ Observations: door or corridor, 10% noise.

◮ Action: moves 3 (20%), 4 (60%), or 5 (20%) states.

Belief update example

True situation:

Robot’s belief:

?
0

0.25

0.5

◮ Observations: door or corridor, 10% noise.

◮ Action: moves 3 (20%), 4 (60%), or 5 (20%) states.

Belief update example

True situation:

Robot’s belief:

0

0.25

0.5

◮ Observations: door or corridor, 10% noise.

◮ Action: moves 3 (20%), 4 (60%), or 5 (20%) states.

MDP-based algorithms

◮ Exploit belief state, and use the MDP solution as a

heuristic.

◮ Most likely state (Cassandra et al., 1996):

πMLS(b) = π∗(arg maxs b(s)).

◮ QMDP (Littman et al., 1995):

πQMDP
(b) = arg maxa

∑
s b(s)Q∗(s, a).

C

I

A

A

D

+1
c

ba

a

0.5

0.5
b

c

a

ab

b

−1

(Parr and Russell, 1995)

POMDPs as continuous-state MDPs

A belief-state POMDP can be treated as a continuous-state

MDP:

◮ Continuous state space ∆: a simplex in [0, 1]|S|−1.

POMDPs as continuous-state MDPs

A belief-state POMDP can be treated as a continuous-state

MDP:

◮ Continuous state space ∆: a simplex in [0, 1]|S|−1.

◮ Stochastic Markovian transition model

p(bo
a |b, a) = p(o|b, a). This is the normalizer of Bayes’ rule.

POMDPs as continuous-state MDPs

A belief-state POMDP can be treated as a continuous-state

MDP:

◮ Continuous state space ∆: a simplex in [0, 1]|S|−1.

◮ Stochastic Markovian transition model

p(bo
a |b, a) = p(o|b, a). This is the normalizer of Bayes’ rule.

◮ Reward function R(b, a) =
∑

s R(s, a)b(s). This is the

average reward with respect to b(s).

POMDPs as continuous-state MDPs

A belief-state POMDP can be treated as a continuous-state

MDP:

◮ Continuous state space ∆: a simplex in [0, 1]|S|−1.

◮ Stochastic Markovian transition model

p(bo
a |b, a) = p(o|b, a). This is the normalizer of Bayes’ rule.

◮ Reward function R(b, a) =
∑

s R(s, a)b(s). This is the

average reward with respect to b(s).

◮ The robot fully ‘observes’ the new belief-state bo
a after

executing a and observing o.

Solving POMDPs

◮ A solution to a POMDP is a policy, i.e., a mapping

π : ∆ 7→ A from beliefs to actions.

Solving POMDPs

◮ A solution to a POMDP is a policy, i.e., a mapping

π : ∆ 7→ A from beliefs to actions.

◮ The optimal value V ∗ of a POMDP satisfies the Bellman

optimality equation V ∗ = HV ∗:

V ∗(b) = max
a

[
R(b, a) + γ

∑

o

p(o|b, a)V ∗(bo
a)
]

Solving POMDPs

◮ A solution to a POMDP is a policy, i.e., a mapping

π : ∆ 7→ A from beliefs to actions.

◮ The optimal value V ∗ of a POMDP satisfies the Bellman

optimality equation V ∗ = HV ∗:

V ∗(b) = max
a

[
R(b, a) + γ

∑

o

p(o|b, a)V ∗(bo
a)
]

◮ Value iteration repeatedly applies Vn+1 = HVn starting

from an initial V0.

Solving POMDPs

◮ A solution to a POMDP is a policy, i.e., a mapping

π : ∆ 7→ A from beliefs to actions.

◮ The optimal value V ∗ of a POMDP satisfies the Bellman

optimality equation V ∗ = HV ∗:

V ∗(b) = max
a

[
R(b, a) + γ

∑

o

p(o|b, a)V ∗(bo
a)
]

◮ Value iteration repeatedly applies Vn+1 = HVn starting

from an initial V0.

◮ Computing the optimal value function is a hard problem

(PSPACE-complete for finite horizon, undecidable for

infinite horizon).

Example V0

(1,0) (0,1)

R

1

0.5

0

α1

α2

α3

b
R(s, a) a1 a2 a3

s1 1.00 0.50 −0.25

s2 0.25 0.75 1.25

PWLC shape of Vn

◮ Like V0, Vn is as well piecewise linear and convex.

◮ Rewards R(b, a) = b · R(s, a) are linear functions of b.

Note that the value of a point b satisfies:

Vn+1(b) = max
a

[
b · R(s, a) + γ

∑

o

p(o|b, a)Vn(b
o
a)
]

which involves a maximization over (at least) the vectors

R(s, a).

◮ Intuitively: less uncertainty about the state (low-entropy

beliefs) means better decisions (thus higher value).

Exact value iteration

Value iteration computes a sequence of value function

estimates V1,V2, . . . ,Vn, using the POMDP backup operator H,

Vn+1 = HVn.

(1,0) (0,1)

V

−1

V1

V2

V3

Optimal value functions

The optimal value function of a (finite-horizon) POMDP is

piecewise linear and convex: V (b) = maxα b · α.

��

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

(1,0) (0,1)

α1

α2

α3

α4

V

−

V

Vector pruning

(1,0) (0,1)

V

b1 b2

α1

α2

α3

α4

α5

Linear program for pruning:

variables: ∀s ∈ S, b(s); x
maximize: x

subject to:

b · (α− α′) ≥ x , ∀α′ ∈ V , α′ 6= α

b ∈ ∆(S)

Optimal POMDP methods

Enumerate and prune:

◮ Most straightforward: Monahan (1982)’s enumeration

algorithm. Generates a maximum of |A||Vn|
|O| vectors at

each iteration, hence requires pruning.

◮ Incremental pruning (Zhang and Liu, 1996; Cassandra et al., 1997).

Search for witness points:

◮ One Pass (Sondik, 1971; Smallwood and Sondik, 1973).

◮ Relaxed Region, Linear Support (Cheng, 1988).

◮ Witness (Cassandra et al., 1994).

Sub-optimal techniques

◮ Grid-based approximations

(Drake, 1962; Lovejoy, 1991; Brafman, 1997; Zhou and Hansen, 2001; Bonet, 2002).

◮ Optimizing finite-state controllers

(Platzman, 1981; Hansen, 1998b; Poupart and Boutilier, 2004).

◮ Heuristic search in the belief tree

(Satia and Lave, 1973; Hansen, 1998a).

◮ Compression or clustering

(Roy et al., 2005; Poupart and Boutilier, 2003; Virin et al., 2007).

◮ Point-based techniques

(Pineau et al., 2003; Smith and Simmons, 2004; Spaan and Vlassis, 2005; Shani et al., 2007; Kurniawati

et al., 2008).

◮ Monte Carlo tree search

(Silver and Veness, 2010).

Point-based backup

◮ For finite horizon V ∗ is piecewise linear and convex, and

for infinite horizons V ∗ can be approximated arbitrary well

by a PWLC value function (Smallwood and Sondik, 1973).

Point-based backup

◮ For finite horizon V ∗ is piecewise linear and convex, and

for infinite horizons V ∗ can be approximated arbitrary well

by a PWLC value function (Smallwood and Sondik, 1973).

◮ Given value function Vn and a particular belief point b we

can easily compute the vector αb
n+1 of HVn such that

αb
n+1 = arg max

{αk
n+1

}k

b · αk
n+1,

where {αk
n+1}

|HVn|
k=1 is the (unknown) set of vectors for HVn.

We will denote this operation αb
n+1 = backup(b).

Point-based (approximate) methods

Point-based (approximate) value iteration plans only on a

limited set of reachable belief points:

1. Let the robot explore the environment.

2. Collect a set B of belief points.

3. Run approximate value iteration on B.

PERSEUS: randomized point-based VI
Idea: at every backup stage improve the value of all b ∈ B.

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

(1,0) (0,1)

V1

b1 b2 b3b4 b5 b6 b7

(Spaan and Vlassis, 2005)

PERSEUS: randomized point-based VI
Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V1
V2

b1 b2 b3b4 b5 b6 b7

(Spaan and Vlassis, 2005)

PERSEUS: randomized point-based VI
Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V1
V2

b1 b2 b3b4 b5 b6 b7

(Spaan and Vlassis, 2005)

PERSEUS: randomized point-based VI
Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V1
V2

b1 b2 b3b4 b5 b6 b7

(Spaan and Vlassis, 2005)

PERSEUS: randomized point-based VI
Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V1
V3

b1 b2 b3b4 b5 b6 b7

(Spaan and Vlassis, 2005)

PERSEUS: randomized point-based VI
Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V1
V3

b1 b2 b3b4 b5 b6 b7

(Spaan and Vlassis, 2005)

PERSEUS: randomized point-based VI
Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V1
V3

b1 b2 b3b4 b5 b6 b7

(Spaan and Vlassis, 2005)

PERSEUS: randomized point-based VI
Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V1
V3

b1 b2 b3b4 b5 b6 b7

(Spaan and Vlassis, 2005)

PERSEUS: randomized point-based VI
Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V1
V4

b1 b2 b3b4 b5 b6 b7

(Spaan and Vlassis, 2005)

PERSEUS: randomized point-based VI
Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V1
V4

b1 b2 b3b4 b5 b6 b7

(Spaan and Vlassis, 2005)

PERSEUS: randomized point-based VI
Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V1
V4

b1 b2 b3b4 b5 b6 b7

(Spaan and Vlassis, 2005)

PERSEUS: randomized point-based VI
Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V1
V4

b1 b2 b3b4 b5 b6 b7

(Spaan and Vlassis, 2005)

Sub-optimal techniques

◮ Grid-based approximations

(Drake, 1962; Lovejoy, 1991; Brafman, 1997; Zhou and Hansen, 2001; Bonet, 2002).

◮ Optimizing finite-state controllers

(Platzman, 1981; Hansen, 1998b; Poupart and Boutilier, 2004).

◮ Heuristic search in the belief tree

(Satia and Lave, 1973; Hansen, 1998a).

◮ Compression or clustering

(Roy et al., 2005; Poupart and Boutilier, 2003; Virin et al., 2007).

◮ Point-based techniques

(Pineau et al., 2003; Smith and Simmons, 2004; Spaan and Vlassis, 2005; Shani et al., 2007; Kurniawati

et al., 2008).

◮ Monte Carlo tree search

(Silver and Veness, 2010).

Multiagent Planning

Multiagent Systems (MASs)

Why MASs?
 If we can make intelligent agents, soon there will be

many...
 Physically distributed systems: centralized solutions

expensive and brittle.
 can potentially provide [Vlassis, 2007,Sycara, 1998]

 Speedup and efficiency
 Robustness and reliability (‘graceful degradation’)
 Scalability and flexibility (adding additional agents)

Example: Predator-Prey Domain

 Predator-Prey domain – still single agent!
 1 agent: the predator (blue)
 prey (red) is part of the

environment
 on a torus ('wrap around world')

 Formalization:
 states (-3,4)
 actions N,W,S,E
 transitions probabilty of failing to move, prey moves
 rewards reward for capturing

??

Example: Predator-Prey Domain

 Predator-Prey domain
 1 agent: the predator (blue)
 prey (red) is part of the

environment
 on a torus ('wrap around world')

 Formalization:
 states (-3,4)
 actions N,W,S,E
 transitions probability of failing to move, prey moves

 rewards reward for capturing

Example: Predator-Prey Domain

 Predator-Prey domain
 1 agent: the predator (blue)
 prey (red) is part of the

environment
 on a torus ('wrap around world')

 Formalization:
 states (-3,4)
 actions N,W,S,E
 transitions probability of failing to move, prey moves

 rewards reward for capturing

Markov decision process (MDP)Markov decision process (MDP)

Example: Predator-Prey Domain

 Predator-Prey domain
 1 agent: the predator (blue)
 prey (red) is part of the

environment
 on a torus ('wrap around world')

 Formalization:
 states (-3,4)
 actions N,W,S,E
 transitions probability of failing to move, prey moves

 rewards reward for capturing

Markov decision process (MDP)

● Markovian state s...
● ...which is observed
● policy π maps states → actions
● Value function Q(s,a)
● Value iteration: way to compute it.

Markov decision process (MDP)

● Markovian state s...
● ...which is observed
● policy π maps states → actions
● Value function Q(s,a)
● Value iteration: way to compute it.

Partial Observability

 Now: partial observability
 E.g., limited range of sight

 MDP + observations
 explicit observations
 observation probabilities

 noisy observations
(detection probability)

o=' nothing '

Partial Observability

 Now: partial observability
 E.g., limited range of sight

 MDP + observations
 explicit observations
 observation probabilities

 noisy observations
(detection probability)

o=(−1,1)

Partial Observability

 Now: partial observability
 E.g., limited range of sight

 MDP + observations
 explicit observations
 observation probabilities

 noisy observations
(detection probability)

o=(−1,1)

π(b)=a

Can not observe the state
→ Need to maintain a belief over states b(s)
→ Policy maps beliefs to actions

Can not observe the state
→ Need to maintain a belief over states b(s)
→ Policy maps beliefs to actions π(b)=a

Partial Observability

 Now: partial observability
 E.g., limited range of sight

 MDP + observations
 explicit observations
 observation probabilities

 noisy observations
(detection probability)

o=(−1,1)

Can not observe the state
→ Need to maintain a belief over states b(s)
→ Policy maps beliefs to actions

Can not observe the state
→ Need to maintain a belief over states b(s)
→ Policy maps beliefs to actions π(b)=a

Partially Observable MDP (POMDP)

Partially Observable MDP (POMDP)

Partial Observability

 Now: partial observability
 E.g., limited range of sight

 MDP + observations
 explicit observations
 observation probabilities

 noisy observations
(detection probability)

o=(−1,1)

Can not observe the state
→ Need to maintain a belief over states b(s)
→ Policy maps beliefs to actions

Can not observe the state
→ Need to maintain a belief over states b(s)
→ Policy maps beliefs to actions π(b)=a

Partially Observable MDP (POMDP)

● reduction → continuous state MDP
(in which the belief is the state)

● Value iterations:
● make use of α-vectors

(correspond to complete policies)
● perform pruning: eliminate dominated α's

Partially Observable MDP (POMDP)

● reduction → continuous state MDP
(in which the belief is the state)

● Value iterations:
● make use of α-vectors

(correspond to complete policies)
● perform pruning: eliminate dominated α's

Multiple Agents

 Now: multiple agents
 fully observable

 Formalization:
 states ((3,-4), (1,1), (-2,0))
 actions {N,W,S,E}
 joint actions {(N,N,N), (N,N,W),...,(E,E,E)}
 transitions probabilty of failing to move, prey moves
 rewards reward for capturing jointly

??

Multiple Agents

 Now: multiple agents
 fully observable

 Formalization:
 states ((3,-4), (1,1), (-2,0))
 actions {N,W,S,E}
 joint actions {(N,N,N), (N,N,W),...,(E,E,E)}
 transitions probability of failing to move, prey moves

 rewards reward for capturing jointly

Multiple Agents

 Now: multiple agents
 fully observable

 Formalization:
 states ((3,-4), (1,1), (-2,0))
 actions {N,W,S,E}
 joint actions {(N,N,N), (N,N,W),...,(E,E,E)}
 transitions probability of failing to move, prey moves

 rewards reward for capturing jointly

Multiagent MDP [Boutilier 1996]

● Differences with MDP
● n agents
● joint actions
● transitions and rewards depend on joint actions

● Solution:
● Treat as normal MDP with 1 'puppeteer agent'
● Optimal policy
● Every agent executes its part

Multiagent MDP [Boutilier 1996]

● Differences with MDP
● n agents
● joint actions
● transitions and rewards depend on joint actions

● Solution:
● Treat as normal MDP with 1 'puppeteer agent'
● Optimal policy
● Every agent executes its part

a=〈a1,a2, ... ,an〉a=〈a1,a2, ... ,an〉

π(s)=aπ(s)=a

Multiple Agents

 Now: multiple agents
 fully observable

 Formalization:
 states ((3,-4), (1,1), (-2,0))
 actions {N,W,S,E}
 joint actions {(N,N,N), (N,N,W),...,(E,E,E)}
 transitions probability of failing to move, prey moves

 rewards reward for capturing jointly

Multiagent MDP [Boutilier 1996]

● Differences with MDP
● n agents
● joint actions
● transitions and rewards depend on joint actions

● Solution:
● Treat as normal MDP with 1 'puppeteer agent'
● Optimal policy
● Every agent executes its part

Multiagent MDP [Boutilier 1996]

● Differences with MDP
● n agents
● joint actions
● transitions and rewards depend on joint actions

● Solution:
● Treat as normal MDP with 1 'puppeteer agent'
● Optimal policy
● Every agent executes its part

a=〈a1,a2, ... ,an〉a=〈a1,a2, ... ,an〉

π(s)=aπ(s)=a

Catch: …?

Multiple Agents

 Now: multiple agents
 fully observable

 Formalization:
 states ((3,-4), (1,1), (-2,0))
 actions {N,W,S,E}
 joint actions {(N,N,N), (N,N,W),...,(E,E,E)}
 transitions probability of failing to move, prey moves

 rewards reward for capturing jointly

Multiagent MDP [Boutilier 1996]

● Differences with MDP
● n agents
● joint actions
● transitions and rewards depend on joint actions

● Solution:
● Treat as normal MDP with 1 'puppeteer agent'
● Optimal policy
● Every agent executes its part

Multiagent MDP [Boutilier 1996]

● Differences with MDP
● n agents
● joint actions
● transitions and rewards depend on joint actions

● Solution:
● Treat as normal MDP with 1 'puppeteer agent'
● Optimal policy
● Every agent executes its part

a=〈a1,a2, ... ,an〉a=〈a1,a2, ... ,an〉

π(s)=aπ(s)=a

Catch: number of joint actions is exponential!
(but other than that, conceptually simple.)

Multiple Agents &
Partial Observability

 Now: Both
 partial observability
 multiple agents

Multiple Agents &
Partial Observability

 Now: Both
 partial observability
 multiple agents

 Decentralized POMDPs
(Dec-POMDPs) [Bernstein et al. 2002]

 both
 joint actions and
 joint observations

Multiple Agents &
Partial Observability

 Again we can make a reduction...

any idea?

Multiple Agents &
Partial Observability

 Again we can make a reduction...

Dec-POMDPs → MPOMDP

(multiagent POMDP)

 'puppeteer' agent that
 receives joint observations

 takes joint actions

 requires broadcasting observations!
 instantaneous, cost-free, noise-free communication → optimal

[Pynadath and Tambe 2002]

 Without such communication: no easy reduction.

The Dec-POMDP Model

Acting Based On Local
Observations

 MPOMDP: Act on global information
 Can be impractical:

 communication not possible
 significant cost (e.g battery power)

 not instantaneous or noise free
 scales poorly with number of agents!

 Alternative: act based only on local observations
 Other side of the spectrum: no communication at all
 (Also other intermediate approaches: delayed communication,

stochastic delays)

Formal Model

 A Dec-POMDP


 n agents
 S – set of states
 A – set of joint actions

 P
T
 – transition function

 O – set of joint observations

 P
O
 – observation function

 R – reward function
 h – horizon (finite)

〈S , A , PT ,O , PO , R ,h〉

a=〈a1,a2, ... ,an〉

o=〈o1,o2, ... , on〉

P(s '∣s , a)

P(o∣a , s ')

R (s , a)

Running Example

 2 generals problem

 small army large army

Running Example

 2 generals problem

 small army large armyS – { s
L
, s

S
 }

A
i
 – { (O)bserve, (A)ttack }

O
i
 – { (L)arge, (S)mall }

Transitions
● Both Observe: no state change
● At least 1 Attack: reset with 50% probability

Observations
● Probability of correct observation: 0.85
● E.g., P(<L, L> | s

L
) = 0.85 * 0.85 = 0.7225

S – { s
L
, s

S
 }

A
i
 – { (O)bserve, (A)ttack }

O
i
 – { (L)arge, (S)mall }

Transitions
● Both Observe: no state change
● At least 1 Attack: reset with 50% probability

Observations
● Probability of correct observation: 0.85
● E.g., P(<L, L> | s

L
) = 0.85 * 0.85 = 0.7225

Running Example

 2 generals problem

 small army large armyS – { s
L
, s

S
 }

A
i
 – { (O)bserve, (A)ttack }

O
i
 – { (L)arge, (S)mall }

Rewards
● 1 general attacks: he loses the battle

● R(*,<A,O>) = -10
● Both generals Observe: small cost

● R(*,<O,O>) = -1
● Both Attack: depends on state

● R(s
L
,<A,A>) = -20

● R(s
R
,<A,A>) = +5

S – { s
L
, s

S
 }

A
i
 – { (O)bserve, (A)ttack }

O
i
 – { (L)arge, (S)mall }

Rewards
● 1 general attacks: he loses the battle

● R(*,<A,O>) = -10
● Both generals Observe: small cost

● R(*,<O,O>) = -1
● Both Attack: depends on state

● R(s
L
,<A,A>) = -20

● R(s
R
,<A,A>) = +5

Running Example

 2 generals problem

 small army large armyS – { s
L
, s

S
 }

A
i
 – { (O)bserve, (A)ttack }

O
i
 – { (L)arge, (S)mall }

Rewards
● 1 general attacks: he loses the battle

● R(*,<A,O>) = -10
● Both generals Observe: small cost

● R(*,<O,O>) = -1
● Both Attack: depends on state

● R(s
L
,<A,A>) = -20

● R(s
R
,<A,A>) = +5

S – { s
L
, s

S
 }

A
i
 – { (O)bserve, (A)ttack }

O
i
 – { (L)arge, (S)mall }

Rewards
● 1 general attacks: he loses the battle

● R(*,<A,O>) = -10
● Both generals Observe: small cost

● R(*,<O,O>) = -1
● Both Attack: depends on state

● R(s
L
,<A,A>) = -20

● R(s
R
,<A,A>) = +5

suppose h=3,
what do you think is optimal in

this problem?

Off-line / On-line phases

 off-line planning, on-line execution is decentralized

Planning Phase Execution Phase

π=〈π1,π2〉

Policy Domain

 What do policies look like?
 In general histories → actions
 before: more compact representations...

 Now, this is difficult: no such representation known!

→ So we will be stuck with histories

Policy Domain

 What do policies look like?
 In general histories → actions
 before: more compact representations...

 Now, this is difficult: no such representation known!

→ So we will be stuck with histories
Most general, AOHs:

But: can restrict to
deterministic policies
→ only need OHs:

Most general, AOHs:

But: can restrict to
deterministic policies
→ only need OHs:

(ai
0,oi

1,ai
1 , ... , ai

t−1 , oi
t)(ai

0,oi
1,ai

1 , ... , ai
t−1 , oi

t)

o⃗i=(oi
1, ... ,oi

t)o⃗i=(oi
1, ... ,oi

t)

No Compact Representation?

There are a number of types of beliefs considered
 Joint Belief, b(s) (as in MPOMDP) [Pynadath and Tambe 2002]

 compute b(s) using joint actions and observations
 Problem: ??

No Compact Representation?

There are a number of types of beliefs considered
 Joint Belief, b(s) (as in MPOMDP) [Pynadath and Tambe 2002]

 compute b(s) using joint actions and observations
 Problem: agents do not know those during execution

No Compact Representation?

There are a number of types of beliefs considered
 Joint Belief, b(s) (as in MPOMDP) [Pynadath and Tambe 2002]

 compute b(s) using joint actions and observations
 Problem: agents do not know those during execution

 Multiagent belief, b
i
(s,q

-i
) [Hansen et al. 2004]

 belief over (future) policies of other agents
 Need to be able to predict the other agents!

 for belief update P(s'|s,a
i
,a

-i
), P(o|a

i
,a

-i
,s'), and prediction of R(s,a

i
,a

-i
)

 form of those other policies? most general:

 if they use beliefs? → infinite recursion of beliefs!

π j : o⃗ j→ a j
π j : o⃗ j→ a j

Goal of Planning

 Find the optimal joint policy
 where individual policies map OHs to actions

 What is the optimal one?
 Define value as the expected sum of rewards:

 optimal joint policy is one with maximal value
(can be more that achieve this)

π∗=〈π1,π2〉

πi :O⃗i → A i

V (π)=E [∑
t=0

h−1

R(s ,a) ∣ π ,b0]

Goal of Planning

 Find the optimal joint policy
 where individual policies map OHs to actions

 What is the optimal one?
 Define value as the expected sum of rewards:

 optimal joint policy is one with maximal value
(can be more that achieve this)

π∗=〈π1,π2〉

πi :O⃗i → A i

V (π)=E [∑
t=0

h−1

R(s ,a) ∣ π ,b0]

Optimal policy for 2 generals, h=3

value=-2.86743

() --> observe
(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe

() --> observe
(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe

Optimal policy for 2 generals, h=3

value=-2.86743

() --> observe
(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe

() --> observe
(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe

Goal of Planning

 Find the optimal joint policy
 where individual policies map OHs to actions

 What is the optimal one?
 Define value as the expected sum of rewards:

 optimal joint policy is one with maximal value
(can be more that achieve this)

π∗=〈π1,π2〉

πi :O⃗i → A i

V (π)=E [∑
t=0

h−1

R(s ,a) ∣ π ,b0]

Optimal policy for 2 generals, h=3

value=-2.86743

() --> observe
(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe

() --> observe
(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe

Optimal policy for 2 generals, h=3

value=-2.86743

() --> observe
(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe

() --> observe
(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe

conceptually:

what should policy optimize to
allow for good coordination (thus

high value)

?

Coordination vs. Exploitation of
Local Information

 Inherent trade-off

coordination vs. exploitation of local information

 Ignore own observations → 'open loop plan'
 E.g., “ATTACK on 2nd time step”

+ maximally predictable
- low quality

 Ignore coordination
 E.g., compute an individual belief b

i
(s)

and execute the MPOMDP policy
+ uses local information
- likely to result in mis-coordination

 Optimal policy should balance between these.

bi(s)=∑q−i

b(s , q−i)

π∗

Planning Methods

Brute Force Search

 We can compute the value of a joint policy V(π)
 using a Bellman-like equation [Oliehoek 2012]

 So the stupidest algorithm is:
 compute V(π), for all π
 select a π with maximum value

 Number of joint policies is huge!
(doubly exponential in horizon h)

 Clearly intractable...

h num. joint policies

1 4

2 64

3 16384

4 1.0737e+09

5 4.6117e+18

6 8.5071e+37

7 2.8948e+76

8 3.3520e+153

Brute Force Search

 We can compute the value of a joint policy V(π)
 using a Bellman-like equation [Oliehoek 2012]

 So the stupidest algorithm is:
 compute V(π), for all π
 select a π with maximum value

 Number of joint policies is huge!
(doubly exponential in horizon h)

 Clearly intractable...

h num. joint policies

1 4

2 64

3 16384

4 1.0737e+09

5 4.6117e+18

6 8.5071e+37

7 2.8948e+76

8 3.3520e+153

No easy way out...

The problem is
NEXP-complete [Bernstein et al. 2002]

 most likely (assuming EXP != NEXP)
doubly exponential time required.

No easy way out...

The problem is
NEXP-complete [Bernstein et al. 2002]

 most likely (assuming EXP != NEXP)
doubly exponential time required.

Brute Force Search

 We can compute the value of a joint policy V(π)
 using a Bellman-like equation [Oliehoek 2012]

 So the stupidest algorithm is:
 compute V(π), for all π
 select a π with maximum value

 Number of joint policies is huge!
(doubly exponential in horizon h)

 Clearly intractable...

h num. joint policies

1 4

2 64

3 16384

4 1.0737e+09

5 4.6117e+18

6 8.5071e+37

7 2.8948e+76

8 3.3520e+153

No easy way out...

The problem is
NEXP-complete [Bernstein et al. 2002]

 most likely (assuming EXP != NEXP)
doubly exponential time required.

No easy way out...

The problem is
NEXP-complete [Bernstein et al. 2002]

 most likely (assuming EXP != NEXP)
doubly exponential time required.

● Still, there are better algorithms that work better for
at least some problems...

● Useful to understand what optimal really means!
(trying to compute it helps understanding)

Algorithmic Developments
 Dynamic Programming

 DP for POSGs/Dec-POMDPs [Hansen et al. 2004]
 Improvements to exhaustive backup [Amato et al. 2009]

 Compression of values (LPC) [Boularias & Chaib-draa 2008]

 (Point-based) Memory bounded DP [Seuken & Zilberstein 2007a]

 Improvements to PB backup [Seuken & Zilberstein 2007b, Carlin and
Zilberstein, 2008; Dibangoye et al, 2009; Amato et al, 2009; Wu et al, 2010, etc.]

 Heuristic Search
 No backtracking: just most promising path

[Emery-Montemerlo et al. 2004, Oliehoek et al. 2008]

 Clustering of histories: reduce number of child nodes
[Oliehoek et al. 2009]

 Incremental expansion: avoid expanding all child nodes
[Spaan et al. 2011, Oliehoek et al., 2013]

 MILP [Aras and Dutech 2010]

State of The Art

To get an impression...
 Optimal solutions

 Improvements of MAA* lead to
significant increases

 but problem dependent

 Approximate (no quality guarantees)
 MBDP: linear in horizon [Seuken & zilberstein 2007a]

 Rollout sampling extension: up to 20 agents [Wu et al. 2010b]

 Transfer planning: use smaller problems to solve large
(structured) problems (up to 1000) agents [Oliehoek 2010]

h MILP LPC GMAA-ICE*

4 72 534.9 0.04

6 - 46.43*

h MILP LPC GMAA-ICE*

5 25 – <0.01

500 – – 0.94*

dec-tiger – runtime (s)

broadcast channel runtime (s)
* excluding heuristic

Communication

Single-agent POMDPs

t

t + 1

st

otime

Single-agent POMDPs

t

t + 1

st

st+1

o

a

time

Single-agent POMDPs

t

t + 1

st

st+1

o

a

r

time

Dec-POMDPs

t

t + 1

st

oi

oj

time

Dec-POMDPs

t

t + 1

st

st+1

oi

oj

ai

aj

time

Dec-POMDPs

t

t + 1

st

st+1

oi

oj

ai

aj

r

time

POMDPs vs. Dec-POMDPs

Frameworks for acting optimally given:

◮ Limited sensing.

◮ Stochastic environments.

POMDPs vs. Dec-POMDPs

Frameworks for acting optimally given:

◮ Limited sensing.

◮ Stochastic environments.

Dec-POMDPs:

◮ Decentralized execution.

◮ Usually centralized, off-line planning.

◮ No common state estimate, no joint belief.

◮ Optimal policies based on individual observation histories.

◮ NEXP-Complete, doubly-exponential in the horizon.

Adding communication

◮ Implicit communication in Dec-POMDPs.
◮ Agent actions affect the state which affects

other agents’ observations.

◮ Explicit communication can be added as well.
◮ Equivalent to Dec-POMDP (Goldman and Zilberstein,

2004).
◮ Information sharing→ can reduce complexity

◮ Issues
◮ What to communicate and to whom?
◮ When to coordinate?

◮ Semantics predominantly predefined.

Communication and interdependence

Independent

POMDPs
Dec-POMDP

Multi-agent

POMDP

Dec-POMDP

with

Comms
Auctioned

POMDPs

Low High

None

Perfect

Interdependence

C
o
m
m
u
n
ic
a
ti
o
n

Communication – Outline

1. Optimizing semantics (Spaan et al., 2006)

◮ Learning the meaning of messages

Communication – Outline

1. Optimizing semantics (Spaan et al., 2006)

◮ Learning the meaning of messages

2. Multiagent POMDPs with delayed communication (Spaan et al.,

2008), (Oliehoek and Spaan, 2012a)

◮ Planning with stochastically delayed information sharing

Communication – Outline

1. Optimizing semantics (Spaan et al., 2006)

◮ Learning the meaning of messages

2. Multiagent POMDPs with delayed communication (Spaan et al.,

2008), (Oliehoek and Spaan, 2012a)

◮ Planning with stochastically delayed information sharing

3. Offline communication policies for factored multiagent

POMDPs (Messias et al., 2011)

◮ Planning when communication can be reduced

Communication – Outline

1. Optimizing semantics (Spaan et al., 2006)

◮ Learning the meaning of messages

2. Multiagent POMDPs with delayed communication (Spaan et al.,

2008), (Oliehoek and Spaan, 2012a)

◮ Planning with stochastically delayed information sharing

3. Offline communication policies for factored multiagent

POMDPs (Messias et al., 2011)

◮ Planning when communication can be reduced

4. Event-driven models (Messias et al., 2013)

◮ Planning for asynchronous execution

Optimizing semantics

Learning the meaning of messages

Example heaven or hell

◮ Task: meet in heaven.

◮ Priest knows the location

of heaven.

Heaven?
Hell?

Heaven?
Hell?

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�������
�������
�������
�������

�������
�������
�������
�������

������
������
������
������

������
������
������
������

��������

�������
�������
�������
�������

Priest

Proposed model (Spaan et al., 2006)

Features:

Decentralized: Each agent considers only its own local state

plus some uncontrollable state features, shared by

all agents.

⇒ avoid computing an (approximate) solution of

the centralized planning problem

Proposed model (Spaan et al., 2006)

Features:

Decentralized: Each agent considers only its own local state

plus some uncontrollable state features, shared by

all agents.

⇒ avoid computing an (approximate) solution of

the centralized planning problem

Communication Semantics of sending a particular message

are part of the optimization problem.

⇒ communication is an integral part of an

agent’s reasoning, not an add-on.

Proposed model (Spaan et al., 2006)

Features:

Decentralized: Each agent considers only its own local state

plus some uncontrollable state features, shared by

all agents.

⇒ avoid computing an (approximate) solution of

the centralized planning problem

Communication Semantics of sending a particular message

are part of the optimization problem.

⇒ communication is an integral part of an

agent’s reasoning, not an add-on.

Environment The agents inhabit a stochastic environment that

is only partially observable to them.

Proposed model: discussion

◮ Agent i ’s policy πi maps a belief over its local state (s0, si)
to an action (as in a POMDP).

◮ A message sent by an agent i as part of its action is

received by agent j at the next timestep as part of its

observation.

◮ Agent j knows πi

◮ a message conveys information about the shared state S0.

◮ Information is represented in agent i ’s observation model.

Communication example

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�������
�������
�������
�������

�������
�������
�������
�������

������
������
������
������

������
������
������
������

��������

�������
�������
�������
�������

2
heaven

left
heaven heaven heaven

left rightright

1

0.5

0

Agent 1’s belief Agent 2’s belief1

Agent 1 just moved to the Priest location.

Communication example

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�������
�������
�������
�������

�������
�������
�������
�������

������
������
������
������

������
������
������
������

��������

�������
�������
�������
�������

2
heaven

left
heaven heaven heaven

left rightright

1

0.5

0

Agent 1’s belief Agent 2’s belief

1

Agent 1 observes heaven-left and executes south/send_1.

Communication example

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�������
�������
�������
�������

�������
�������
�������
�������

������
������
������
������

������
������
������
������

��������

�������
�������
�������
�������

heaven
left

heaven heaven heaven
left rightright

1

0.5

0

Agent 1’s belief Agent 2’s belief

1

2

Agent 2 observes no-walls/received_1 and executes west.

POMDP model for a single agent

◮ Fixed policies of other agents can be treated as part of the

environment.

◮ Agent j ’s policy πj influences agent i ’s POMDP model:

◮ Observation model through communication.

◮ Reward function through joint reward.

◮ Constructing a POMDP model for i requires statistics p(sj)
and p(aj |sj).

◮ Approximated by simulating {πi , πj}.

Delayed communication

Planning with stochastically delayed information sharing

Multiagent POMDPs with delayed communication

Independent

POMDPs
Dec-POMDP

Multi-agent

POMDP

MPOMDP

Delayed

Comm

Low High

None

Perfect

Interdependence

C
o
m
m
u
n
ic
a
t
io
n

Instantaneous communication

time

} decision
interval

} decision
interval

robot i robot j

st

st+1

oi

oi

oj

oj

ai

aj

Instantaneous communication

◮ Instantaneous, perfect communication reduces a

Dec-POMDP to a POMDP. (Pynadath and Tambe, 2002)

◮ Observation sharing→ each agent knows belief bt at

time t .

◮ Piecewise-linear and convex (PWLC) value function.

◮ But this synchronization step takes time.

time

}

}

is common knowledge

st

st+1

oi

oi

oj

oj

ai

aj

bt

Delayed communication

◮ But what if communication is not instantaneous?

◮ Delayed communication is useful in several settings:
◮ Smart protection schemes
◮ Multi-robot systems
◮ Distributed video surveillance
◮ Upper bound on Dec-POMDP value function (Oliehoek et al., 2008)

Delayed communication

time

} decision
interval

} decision
interval

agent i agent j

st

st+1

oi

oi

oj

oj

ai

aj

Fixed delay communication

◮ Each agent knows the last commonly known bt−k , k > 0.

◮ If k = 1, the optimal value function is PWLC. (Hsu and Marcus, 1982)

◮ Equal to the QBG value function (Oliehoek et al., 2008)

◮ Otherwise the value function is not separable (Varaiya and Walrand,

1978)

◮ It is not a function over the joint belief space.

◮ But what if the delay can vary?

Stochastic communication delays (Spaan et al., 2008)

◮ Probability that synchronization succeeds within a

particular stage i : piTD(s)

◮ Optimal value function:

Q∗
SD = R + p0TDF0TD + p1TDF1TD + p2TDF2TD + . . . ,

where FiTD is the exp. future reward given delay i .

◮ We assume during planning that delay is at most 1 step:

pD = p1TD + p2TD + · · · = 1− p0TD,

and define an approximate value function as

Q̃∗
SD = R + p0TDF0TD + pDF1TD.

◮ We prove that Q̃∗
SD is PWLC over the joint belief space.

Algorithms

Algorithms

◮ Point-based approximate POMDP techniques transfer. (Spaan

et al., 2008)

◮ Exhaustive backups of the 1TD delay value function can be

sped up by tree-based pruning. (Oliehoek and Spaan, 2012b)

◮ For k > 1, we propose an online algorithm similar to

Dec-COMM. (Roth et al., 2005)

Simulation results

◮ The policies consider potential future communication

capabilities.

Experimental results

Meet in corner

S

G CCW CCW

CCWCW

CW CW

◮ The CW route is cheaper, and with uniform p0TD it is

chosen.

◮ We set p0TD(s) = 0, ∀s ∈ CW and to 1 everywhere else.

◮ Now the agents choose the CCW route, leading to higher

payoff.

Experimental results

Policies computed for a specific value of p0TD, but evaluated

under different values of p0TD.

Meet in corner (large)

0 0.5 1

2

3

4

5

6

7

Ṽ
(b

0
)

p0TD

πp0TD=0

πp0TD=0.5

πp0TD=1.0

Offline communication policies

Planning when communication can be reduced

Exploiting local interactions

◮ Real-world domains have structure that can be exploited.
◮ Factored models.

◮ Localized interactions can lead to reduced communication.

Exploiting local interactions

◮ Real-world domains have structure that can be exploited.
◮ Factored models.

◮ Localized interactions can lead to reduced communication.

Exploiting local interactions

◮ Real-world domains have structure that can be exploited.
◮ Factored models.

◮ Localized interactions can lead to reduced communication.

Factored MPOMDPs

Independent

POMDPs
Dec-POMDP

Multi-agent

POMDP

Factored

MPOMDPs

Low High

None

Perfect

Interdependence

C
o
m
m
u
n
ic
a
t
io
n

Relay example

◮ State space: S = X1 × X2 where X1 = {l1, l2}
X2 = {r1, r2} ;

◮ Actions: A1 = A2 = {shuffle, exchange, sense/noop};

◮ Observations: O1 = O2 = {door, wall, idle};

◮ Agents should exchange when both are near the doorway.

◮ Unsuccessful exchanges are penalized.

R1

R2L2

L1

D

D

1

2

shuffle

exchange noop

X1

X2

l1 l2

r1 r2

Factored Multiagent POMDPs

◮ In Multiagent POMDPs, joint beliefs map to joint actions.

◮ It is advantageous to factor the belief state itself. (Messias et al.,

2011)

◮ Agents maintain belief states over locally relevant factors.
◮ Joint belief is approximated in factorized form.

◮ Multiagent POMDP policies are mapped to individual belief
spaces

◮ Query communication is used when other agents’ factors

are required.

◮ Extends ideas of Roth et al. (2007) to the MPOMDP

setting.

Linear and local supports of the value function

Linear supports: Local supports:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

b1(L1)

Shuffle
Exchange

Sense

R1

R2L2

L1

D

D

1

2

shuffle; exchange; sense/noop.

Event-driven models

Planning for asynchronous execution

Discrete Multiagent Markov Decision Processes

Often multiagent decision-theoretic models are discrete:

◮ Discrete state space S

◮ Discrete action space A

◮ Policies are step-based,

abstract w.r.t. time:

π(s) = {δ1(s), . . . , δh(s)}

◮ Communication required

if only local states can

be observed.

a1 a2

Agent 1 Agent 2

World State
(discrete)

Pr(s′|s, a)

R(s′, a)

In the Real World...

a1 a2

World State
(discrete)

Pr(s′|s, a)

R(s′, a)

a1 a2

World State
(discrete)

Pr(s′|s, a)

R(s′, a)

a1 a2

World State
(discrete)

Pr(s′|s, a)

R(s′, a)

a1 a2

World State
(discrete)

Pr(s′|s, a)

R(s′, a)

Real-Time Execution Strategies
Synchronous Execution:

0 T 2T 3T 4T

Agent 1

Agent 2

a(3)a(2)a(0)

a(0) a(1) a(2)

a(1)

a(3)

s0 s1 s2 s3T + δ

Real-Time Execution Strategies
Synchronous Execution:

0 T 2T 3T 4T

Agent 1

Agent 2

a(3)a(2)a(0)

a(0) a(1) a(2)

a(1)

a(3)

s0 s1 s2 s3T + δ

Event-Driven (Asynchronous) Execution:

0 te1

Agent 1

Agent 2

a(0)

a(0)

a(2)

a(2)

a(1)

a(1)

a(3)

a(3)

s0 s1 s2 s3

te2 te3

Semi-Markov Decision Processes

SMDP: Extension of a discrete MDP with a temporal

distributions f (s, a, s′):

p(t , s′|s, a) = p(t |s, a, s′)Pr(s′|s, a)

= f (s, a, s′)T (s, a, s′)

t

p(t|s, a, s′) World State

R(s, a)

c(s, a, s′)

a

Generalized Semi-Markov Decision Processes

◮ Generalized SMDPs (Younes and

Simmons, 2004)

◮ State transitions abstracted as

events, e ∈ E .
◮ Transition probabilities also

depend on the history of

events.

◮ We apply a GSMDP-based

solution to a team of real robots.

(Messias et al., 2013)

◮ Extension to Partially-Observable

domains

s1

s2 s3

t t

p(t|s2, ~en) p(t|s3, ~en)

a1 a2

P
r(
s 2
|s
1
, a
) Pr(s

3 |s
1 ,
a)

Experimental Setup

◮ A cooperative decision-making problem for two robots;

◮ Implemented both as a GSMDP and a synchronous MDP

with configurable decision rate→ |S| = 126, |A| = 36;

◮ Results both with realistic physics-based simulation and

with real robots.

Robot Results - Video

Combined Results - Data

Combined results:

0

10

20

30

40

50

60

T
im

e
b

et
w

ee
n

 g
o

al
s

(s
)

GSMDP MDP!0.1 MDP!0.2 MDP!0.4 MDP!0.6 MDP!0.8 MDP!2 MDP!4 MDP!6

Simulation Results

MDP, T = 4s:

0 50 100 150
0

5

10

15

time, t (s)D
is

ta
n

c
e
 t

o
 t

h
e
 G

o
a
l,

 d
 (

m
)

0 50 100 150
!100

0

100

200

Jo
in

t
R

e
w

a
rd

GSMDP

0 50 100 150
0

5

10

15

time, t (s)D
is

ta
n

c
e
 t

o
 t

h
e
 G

o
a
l,

 d
 (

m
)

0 50 100 150
!100

0

100

200

Jo
in

t
R

e
w

a
rd

Models and algorithms using communication

◮ Analysis of possible communication models and

complexity results (Pynadath and Tambe, 2002) (Goldman and Zilberstein, 2004)

Models and algorithms using communication

◮ Analysis of possible communication models and

complexity results (Pynadath and Tambe, 2002) (Goldman and Zilberstein, 2004)

◮ Myopic communication in transition independent

Dec-MDPs (Becker et al., 2009)

Models and algorithms using communication

◮ Analysis of possible communication models and

complexity results (Pynadath and Tambe, 2002) (Goldman and Zilberstein, 2004)

◮ Myopic communication in transition independent

Dec-MDPs (Becker et al., 2009)

◮ Reasoning about run-time synchronization decisions (Nair

et al., 2004), (Roth et al., 2005)

Models and algorithms using communication

◮ Analysis of possible communication models and

complexity results (Pynadath and Tambe, 2002) (Goldman and Zilberstein, 2004)

◮ Myopic communication in transition independent

Dec-MDPs (Becker et al., 2009)

◮ Reasoning about run-time synchronization decisions (Nair

et al., 2004), (Roth et al., 2005)

◮ Exploiting factored Dec-MDP representations (Roth et al., 2007)

Models and algorithms using communication

◮ Analysis of possible communication models and

complexity results (Pynadath and Tambe, 2002) (Goldman and Zilberstein, 2004)

◮ Myopic communication in transition independent

Dec-MDPs (Becker et al., 2009)

◮ Reasoning about run-time synchronization decisions (Nair

et al., 2004), (Roth et al., 2005)

◮ Exploiting factored Dec-MDP representations (Roth et al., 2007)

◮ Multi-robot cooperation with auctioned POMDPs (Capitán et al.,

2013)

Communication – Conclusions

◮ Multiagent planning under

uncertainty can exploit

communication.

◮ Real-world systems often can

communicate, but not perfectly.

◮ Sparse dependencies can lead to

sparse communication needs.

Independent

POMDPs
Dec-POMDP

Multi-agent

POMDP

Factored

MPOMDPs

Low High

None

Perfect

Interdependence

C
o
m
m
u
n
ic
a
t
io
n

Independent

POMDPs

Auctioned

POMDPs

+ DDF

MPOMDP

Delayed

Comm

Particular issues:

1. Learning semantics

2. Deal with imperfect communication

3. Minimizing communication

4. Asynchronous execution

Conclusions

◮ Decision-theoretic models
provide a principled framework
for planning under uncertainty

◮ Acting and sensing uncertainty
◮ Single and multiple agents
◮ Communication

◮ Software and solvers available

Current challenges

◮ Identifying structure in domains or policies, e.g., influences

◮ Considering richer communication models

Further reading

◮ Textbook on reinforcement learning
◮ R. S. Sutton and A. G. Barto. “Reinforcement Learning: An

Introduction”. MIT Press, 1998.

◮ Recent book containing chapters on many aspects of

decision-theoretic planning:

◮ M. Wiering and M. van Otterlo, editors, “Reinforcement

Learning: State of the Art”, Springer, 2012.

◮ Software and other resources:

MultiAgentDecisionProcess toolbox

http://masplan.org

http://masplan.org

References I

R. Becker, A. Carlin, V. Lesser, and S. Zilberstein. Analyzing myopic approaches for multi-agent communications.
Computational Intelligence, 25(1):31–50, 2009.

R. Bellman. Dynamic programming. Princeton University Press, 1957.

D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, Belmont, MA, 2nd edition, 2000.

B. Bonet. An epsilon-optimal grid-based algorithm for partially observable Markov decision processes. In
International Conference on Machine Learning, 2002.

R. I. Brafman. A heuristic variable grid solution method for POMDPs. In Proceedings of the Fourteenth National
Conference on Artificial Intelligence, 1997.

J. Capitán, M. T. J. Spaan, L. Merino, and A. Ollero. Decentralized multi-robot cooperation with auctioned POMDPs.
International Journal of Robotics Research, 32(6):650–671, 2013.

A. R. Cassandra, L. P. Kaelbling, and M. L. Littman. Acting optimally in partially observable stochastic domains. In
Proceedings of the Twelfth National Conference on Artificial Intelligence, 1994.

A. R. Cassandra, L. P. Kaelbling, and J. A. Kurien. Acting under uncertainty: Discrete Bayesian models for mobile
robot navigation. In Proc. of International Conference on Intelligent Robots and Systems, 1996.

A. R. Cassandra, M. L. Littman, and N. L. Zhang. Incremental pruning: A simple, fast, exact method for partially
observable Markov decision processes. In Proc. of Uncertainty in Artificial Intelligence, 1997.

H. T. Cheng. Algorithms for partially observable Markov decision processes. PhD thesis, University of British
Columbia, 1988.

A. W. Drake. Observation of a Markov process through a noisy channel. Sc.D. thesis, Massachusetts Institute of
Technology, 1962.

C. V. Goldman and S. Zilberstein. Decentralized control of cooperative systems: Categorization and complexity
analysis. Journal of Artificial Intelligence Research, 22:143–174, 2004.

E. A. Hansen. Finite-memory control of partially observable systems. PhD thesis, University of Massachusetts,
Amherst, 1998a.

E. A. Hansen. Solving POMDPs by searching in policy space. In Proc. of Uncertainty in Artificial Intelligence, 1998b.

K. Hsu and S. I. Marcus. Decentralized control of finite state Markov processes. IEEE Transactions on Automatic
Control, 27(2):426–431, 1982.

References II

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable stochastic domains.
Artificial Intelligence, 101:99–134, 1998.

H. Kurniawati, D. Hsu, and W. Lee. SARSOP: Efficient point-based POMDP planning by approximating optimally
reachable belief spaces. In Robotics: Science and Systems, 2008.

M. L. Littman, A. R. Cassandra, and L. P. Kaelbling. Learning policies for partially observable environments: Scaling
up. In International Conference on Machine Learning, 1995.

W. S. Lovejoy. Computationally feasible bounds for partially observed Markov decision processes. Operations
Research, 39(1):162–175, 1991.

J. V. Messias, M. T. J. Spaan, and P. U. Lima. Efficient offline communication policies for factored multiagent
POMDPs. In Advances in Neural Information Processing Systems, pages 1917–1925, 2011.

J. V. Messias, M. T. J. Spaan, and P. U. Lima. GSMDPs for multi-robot sequential decision-making. In Proceedings
of the Twenty-Seventh AAAI Conference on Artificial Intelligence, pages 1408–1414, 2013.

G. E. Monahan. A survey of partially observable Markov decision processes: theory, models and algorithms.
Management Science, 28(1), Jan. 1982.

R. Nair, M. Tambe, M. Roth, and M. Yokoo. Communication for improving policy computation in distributed POMDPs.
In Proc. of Int. Conference on Autonomous Agents and Multi Agent Systems, 2004.

F. A. Oliehoek and M. T. J. Spaan. Tree-based solution methods for multiagent POMDPs with delayed
communication. In Proc. of the AAAI Conference on Artificial Intelligence, pages 1415–1421, 2012a.

F. A. Oliehoek and M. T. J. Spaan. Tree-based pruning for multiagent POMDPs with delayed communication. In
Proc. of Int. Conference on Autonomous Agents and Multi Agent Systems, pages 1229–1230, 2012b.

F. A. Oliehoek, M. T. J. Spaan, and N. Vlassis. Optimal and approximate Q-value functions for decentralized
POMDPs. Journal of Artificial Intelligence Research, 32:289–353, 2008.

R. Parr and S. Russell. Approximating optimal policies for partially observable stochastic domains. In Proc. Int. Joint
Conf. on Artificial Intelligence, 1995.

J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algorithm for POMDPs. In Proc. Int.
Joint Conf. on Artificial Intelligence, 2003.

References III
L. K. Platzman. A feasible computational approach to infinite-horizon partially-observed Markov decision problems.

Technical Report J-81-2, School of Industrial and Systems Engineering, Georgia Institute of Technology, 1981.
Reprinted in working notes AAAI 1998 Fall Symposium on Planning with POMDPs.

P. Poupart and C. Boutilier. Value-directed compression of POMDPs. In Advances in Neural Information Processing
Systems 15. MIT Press, 2003.

P. Poupart and C. Boutilier. Bounded finite state controllers. In Advances in Neural Information Processing
Systems 16. MIT Press, 2004.

M. L. Puterman. Markov Decision Processes—Discrete Stochastic Dynamic Programming. John Wiley & Sons, Inc.,
New York, NY, 1994.

D. V. Pynadath and M. Tambe. The communicative multiagent team decision problem: Analyzing teamwork theories
and models. Journal of Artificial Intelligence Research, 16:389–423, 2002.

M. Roth, R. Simmons, and M. Veloso. Reasoning about joint beliefs for execution-time communication decisions. In
Proc. of Int. Conference on Autonomous Agents and Multi Agent Systems, 2005.

M. Roth, R. Simmons, and M. Veloso. Exploiting factored representations for decentralized execution in multi-agent
teams. In Proc. of Int. Conference on Autonomous Agents and Multi Agent Systems, 2007.

N. Roy, G. Gordon, and S. Thrun. Finding approximate POMDP solutions through belief compression. Journal of
Artificial Intelligence Research, 23:1–40, 2005.

S. J. Russell and P. Norvig. Artificial Intelligence: a modern approach. Prentice Hall, 2nd edition, 2003.

J. K. Satia and R. E. Lave. Markovian decision processes with probabilistic observation of states. Management
Science, 20(1):1–13, 1973.

G. Shani, R. I. Brafman, and S. E. Shimony. Forward search value iteration for POMDPs. In Proc. Int. Joint Conf. on
Artificial Intelligence, 2007.

D. Silver and J. Veness. Monte-Carlo planning in large POMDPs. In Advances in Neural Information Processing
Systems 23, 2010.

S. Singh, T. Jaakkola, and M. Jordan. Learning without state-estimation in partially observable Markovian decision
processes. In International Conference on Machine Learning, 1994.

R. D. Smallwood and E. J. Sondik. The optimal control of partially observable Markov decision processes over a
finite horizon. Operations Research, 21:1071–1088, 1973.

References IV

T. Smith and R. Simmons. Heuristic search value iteration for POMDPs. In Proc. of Uncertainty in Artificial
Intelligence, 2004.

E. J. Sondik. The optimal control of partially observable Markov processes. PhD thesis, Stanford University, 1971.

M. T. J. Spaan and N. Vlassis. Perseus: Randomized point-based value iteration for POMDPs. Journal of Artificial
Intelligence Research, 24:195–220, 2005.

M. T. J. Spaan, G. J. Gordon, and N. Vlassis. Decentralized planning under uncertainty for teams of communicating
agents. In Proc. of Int. Conference on Autonomous Agents and Multi Agent Systems, pages 249–256, 2006.

M. T. J. Spaan, F. A. Oliehoek, and N. Vlassis. Multiagent planning under uncertainty with stochastic communication
delays. In Proc. of Int. Conf. on Automated Planning and Scheduling, pages 338–345, 2008.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

P. Varaiya and J. Walrand. On delayed sharing patterns. IEEE Transactions on Automatic Control, 23(3):443–445,
1978.

Y. Virin, G. Shani, S. E. Shimony, and R. Brafman. Scaling up: Solving POMDPs through value based clustering. In
Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, 2007.

H. Younes and R. Simmons. Solving generalized semi-Markov decision processes using continuous phase-type
distributions. In Proceedings of the Nineteenth National Conference on Artificial Intelligence, pages 742–747,
2004.

N. L. Zhang and W. Liu. Planning in stochastic domains: problem characteristics and approximations. Technical
Report HKUST-CS96-31, Department of Computer Science, The Hong Kong University of Science and
Technology, 1996.

R. Zhou and E. A. Hansen. An improved grid-based approximation algorithm for POMDPs. In Proc. Int. Joint Conf.
on Artificial Intelligence, 2001.

