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What is the problem? The creation of

autonomous mobile robots that act intelligently
in real world domains.

AUTONOMOUS MOBILE
ROBO TS

Why is it hard? The integration of a range of
different functionalities to create a robust,

intelligent system is hard both in theory and
practice
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1 We build worlds for robofs







2 Robots move into our world
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FREQ.

PROCESSING

OUTPUT

Asynch.

World model, planning,
sensor anchoring/symbol
grounding

<5Hz

Behaviour or task plans,

i

Discretisation of

continuous state,
topological localisation

..

» actions at locations

‘ Navigation between
sequence of discrete
locations, generates paths
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http://en.wikipedia.org/wiki/A*_search_algorithm
http://en.wikipedia.org/wiki/Hough_transform

Minerva and Rhino
CMU/Bonn

1995 - 19987

e Dynamic Window

* Topological Mapping
e Particle Filtering

In the Smithsonian Institution's National Museum
of American History and ON THIS WEB SITE!



Dora
EU CogX Project

2008 - 2012

 Conceptual Mapping
* Motivation System

e Knowledge Self-Extension




CoBot
CMU

2009 - present

e 1 000km of autonomous
localization and
navigation!

* Symbiotic autonomy

* Task scheduling

Ca mera

Stargazer

Tablet PC

Kinect

Hokuyo

LIDAR
Omnidirectional



STRANDS Robots
EU STRANDS Project

2013 - present

e Aiming for 120 days
autonomy in real-world
environments

e Qualitative representations

e Modelling temporal

dynamics
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What is the problem? Giving robots an
understanding of space

KNOWLEDGE OF SPACE

Why is it hard? Finding the right abstraction for
the right problem, avoid complexity yet
providing reasoning power



Qualitative representations

Of space

and time

Compress/abstract multiple quantitative states
iNto a single qualitative state

Often used to capture the inherent or assumed
structure in a spatial or temporal domain

Representations are of

'en relational, providing

relative rather than absolute information






“Is the pig near the cow?”
g













Qualitative Spatial Relations

(OSRy)




Akshaya Thippur et al. KTH-3D-TOTAL: A 3D Dataset for Discovering
Spatial Structures for Long-Term Autonomous Learning. In SAIS' 14,

Lars et al. Bootstrapping probabilistic models of qualitative
spatial relations for active visual object search. In AAAlI SS
2014 on Qualitative Representations for Robots
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Ternary Point Calculus

Moratz, Nebel, and Freksa, Qualitative spatial reasoning
about relative position. Spatial Cognition 111, 2003.

referent
(target)

origin relatum
(landmark)



DoOoK

wirt. monitor

mug
wrt. monitor
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Position of cup relative to monitor

P,i(x10)= ZwiNx | ui, Zi)




Position of cup relative to keyboard










Where to stand”?



Where to look?
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Where to look"?




What am | likely to see”
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Where to look?
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Lars Kunze

Fille Panels
‘:‘_{l‘il-‘ul = Move Camena “elect F s Camera Measure ” 2DF ¢ Esbimat > ) Nav 9'» -

) Displays x NI, 1 G e
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Marker Topic foest_views_poses
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v

Queve Size 100
» Namespaces
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Add Remove Rename

© Time

ROS Time: 1395405237.39 ROS Elapsed: 734185

Wall Time: 1395405237.42 wall Elapsed: 734183

Lxperimental

Reset Left-Click: Rotate. Middle-Click: Move X/Y. Right-Click/Mouse Wheel: Zoom. Shift: More oplions



Supporting planes vs QSRs
HORIELS ke
3 out of 8 tables
choose 1/500 sim. des

............

_Kunze, K. K. Doreswamy and N. Hawes.
/ng Qualitative Spatial Relations for
/nd/rect Object Search. In ICRA 14.

-
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10

7.5

2.5

Search Results (Simulation)

M Objects Found (/10)

@ Time (secs) Poses

Random Views

Supporting Planes

Correct QSRs

Partially Correct QSRs Misleading QSRs

70.0

52.5

35.0

17.5

0.0






Search Results (Robot)

M Objects Found (/10) M Time (secs) | Poses
10 70.0
7.5 52.5
5 35.0
2.5 17.5
0 0.0

Supporting Planes Correct QSRs
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Qualitative Spatial Relations

(OSRs)

Atrain: 19 desks, 3 scenes per desk = 5X scenes
i est: 1 desk, 3 scenes per desk = 3 scenes

S —

S A



Classification Results (Robot)

B With Visual Classification | Without Visual Classification

100.0

96.0 Y969

75.0

25.0

.
0.0 =

No Relations Learnt Metric Relations Ternary Point Calculus  Ternary Point Calculus  Ternary Point Calculus  Ternary Point Calculus
Distance Distance Distance
Relative Size Relative Size
Connectivity

Lars Kunze et al. Combining Top-down Spatial Reasoning and Bottom-up Object
Class Recognition for Scene Understanding. In IROS '14.
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STRUCTURE

Autonomous Mobile Robots
Knowledge of Space

Break

Understanding Change

The Unknown



What is the problem? Giving robots an
understanding the dynamics of their world

"UNDERSTANDING"™
CHANGE

Why is it hard? Change can come from all sorts
of sources, with many causes: predictable and
unpredictable, observable and unobservable



Envisioning the Effects of Robot Manipulation Actions
using Physics-based Simulations
Kunze and Beetz, Artificial Intelligence 2015

The robot’s actions are a major source of change in tasks

OW can action parameters be chosen such
that the change is the desired outcome

Envisioning: logic to simulation to logic again



How to pour the par‘Lak

here to hold it?
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" How to flip thémake?

ow to push the spatula”
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Subsymbolic

Symbolic

Knowledge
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Physics-based  World State & . Logged Data\

Simulation  Action Monitor Structures
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Logic Programming with Simulation-based Temporal
Projection for Everyday Robot Object Manipulation

Lars Kunze, Mihai Emanuel Dolha and Michael Beetz
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Humans cause a lot of the environmental
dynamics experienced by a robot

NG = SN | Severanc



Action Recognition

Activity/Action/Plan/Intent/Event

Recognition/

Recognition/

Prediction/Forecasting

Bulld models of actions

Recognise when a human is performing an action

Predict the next action in the activity

This is a very large and diverse fielo



Requires knowledge of space and time

Builld models of actions
Recognise when a human is performing an action

Predict the next action in the activity

plus learning and probabillistic reasoning



Activities

Event Unloading Baking a cake Tackle
Classes Bridge On Making Coffee Goal kick
Object Plane Spoon Player
Classes Trolley Cup Ball

Unsupervised Learning of Event and
Object Classes from Video
Sridhar, PhD Thesis, 2010.




Relational Graph

@ PICKAND PUT BOTTLE
@ STICK LABEL

Bag-of-Relations : Object-Object Bag-of-Relations : Upper-Body Model
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Unsupervised Learning of Event Classes from Video
Sridhar, Cohn and Hogg. In AAAI’10.

Automatically learn models of activities from video,
then recognise them in new videos

Events are sequences of spatial interactions
between objects

Activities are collections of events
with related objects that cooccur.



Unsupervised Learning of Event and
Object Classes from Video
Sridhar, PhD Thesis, 2010.



The Region
Connection Calculus

GgomS

’

PN

Qualitative spatial representation and reasoning with the region
connection calculus. A. G. Cohn, B. Bennett, J. Gooday, and N. M.
Gotts. Geolnformatica, 1(3):275-316, 1997.
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Allen’s Interval Algebra

J. F. Allen. Maintaining knowledge about temporal intervals.
Communications of the ACM, 26(11):832— 843, 1983.



time / frames

How can we segment events from this stream of data”

How can we compare events?



time / frames

S(M,72)0 DR DR

S(72,7T3) D
S(T.,7) D

E(T1,72)
E(T2,7T3)
E(T2,T4)

q
q

D

D

q

q

PO PO PO PO PO PO

DR DR PO PO PO PO
DR DR DR DR DR PO

< PO >
— DR - PO :
< DR - <PO




time / frames
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Candidate Event Graph
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Over the course of a video,
common graph/event structure
are extracted into classes
following rules

Events in the same
activity can share objects



The recognition process tries to
find events which provide the
most likely explanation for the data






Bridge attaches to plane. Loader attaches to the plane. Trolley attaches and then

detaches from the loader.
s = ———— ] . S

Bridge attaches to plane. Loader attaches to the plane. Trolley attaches and then detaches from
the loader. Loader detaches from the plane.




Action Recognition
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Spectral Analysis for Long-Term Robotic Mapping
Krajnik, Fentanes, Cielniak, Dondrup and Duckett. In ICRA’14.

Change in the environment is often the result of
human activity

Human activities are often periodic

Other dynamics are periodic too (day/night etc.).



Cloudy

b

Two-persons office

Corridor

(a) Variations introduced by illumination

Semantic Modelling of Space. Pronobis, Jensfelt, Sj00,
Zender, Kruijff, Mozos, and Burgard. In volume 8 of Cognitive
Systems Monographs, 2010.



Corridor

(b) Variations observed over time

Semantic Modelling of Space. Pronobis, Jensfelt, Sj00,
Zender, Kruijff, Mozos, and Burgard. In volume 8 of Cognitive
Systems Monographs, 2010.



Spectral Analysis for Long-Term Robotic Mapping
Krajnik, Fentanes, Cielniak, Dondrup and Duckett. In ICRA’14.

Change in the environment is often the result of
human activity

Human activities are often periodic

Other dynamics are periodic too (day/night etc.).

Therefore use frequency analysis to learn ano
oredict the dynamics of the environment



assuming binary states
cell occupancy, door open/closeq,
feature presence/absence

value of j state: s; = {0, 1}
probability of j# state: p; = P(s; = 1)
probability of j# state at time ¢: p;(¢)

Bayesian models tell us how to update p;(¢) given uncertain
observations, but assume a



use the Fourier Transform
to get a compact, predictive model for s

seqguence of states: s()

of sequence: S(w) = FT(s(1))

the spectral model P is the n most
prominent frequencies S(w)

P can be used to generate a smoothed sequence s(t)
and a predicted sequence s'(f) and outlier set O



Time domain

| | |
Measured state — s(t
Probability function — p(t
Estimated state — s’ (t
Outlier set —




state estimation

s'(6) = p(£) > 0.5 = c(IFT(P)) > 0.5

state reconstruction

s()=s)® (& O)=c(UFT(P))>0.5® (t £ O)

(estimation xor with outlier set)



| | | | | | | | | | | | |
Measurements used to establish the model
Predicted probability estimate
Predicted future state

Measured state — dataset 1 ———
Measured state — dataset 2

Tue Thu Sat Mon Wed Fr1 Sun
Office door open/closed model.
Compresses 18 million readings to 3 frequencies



Sun Mon Tue Wed Thu Fri Sat

~ Person detected —— Anomaly detection
Probability of person present




Lincoln Centre for Autonomous Systems, United Kingdom
Royal Institute of Technology, Sweden

T. Krajnik, J.P. Fentanes, O.M. Mozos
T. Duckett, J. Ekekrantz, M. Hanheide

Long-Term Topological Localisation

for Service Robots in Dynamic
Environments using Spectral Maps

e Dataset collection and processing \:gﬂ /
FKTHS %
g v
&f%x@%é LINCOLN
Supported by EU ICT project 600623 'STRANDS' ROBOTICS

https://youtu.be/Qw1kS_5zVwE



TABLE 1

OVERALL LOCALIZATION ERROR (%)

Image Occupancy

Model  Model features orids

type order Nov Feb Nov Feb
statical - 35%  45% 21%  17%
spectral 1 25%  26% 14%  13%
spectral 2 22%  27% 14% 3%
spectral 3 18%  24% 14%  17%
spectral 4 17%  29% T%  17%
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R0 Info Terminal

Cafeteria
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Offices (Dr.)
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Lifts

Probability of interaction at different locations — FreMEn model
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RN Info Terminal
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What is the problem? The known knowns, the
known unknowns, the unknown unknowns...

KNOWLEDGE OF THE
UNKNOWN

Why is it hard? Because the open world is very,
very open



A Frontier-Based Approach for Autonomous Exploration
Yamauchi. In CIRA ‘97.

~Or mobile robots a unknown space
IS a crucial proplem.

SO autonomous exploration is a desirable capabllity

Exploration can e driven using frontiers.

These are boundaries between known, open
space and the UNKNTWN



Unknown space

P s
[ 1 |

¥

Frontier I =

Known space «
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Unknown space
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https://youtu.be/3W1ufd7rpCA



EXPLORER.

http://cogx.eu/results/dora/



http://cogx.eu/results/dora/

global 2D line-based SLAM

local 3D grid map

node-based space
discretisation

ontology of object
and room types
NnoN-monotonic

clustering of nodes into
rooms via reasoner

peliet modelling and
continual planning

pre-trained visual recognisers



Add goal strings

O Go to a location

O Explore a place hypothesis

O Know the location of an object

O Know the type of a room



activated goals

/\O/\OA

behaviour generation
Processes

O O goal management

ProCcesses
surfaced goals

attention filter filtering processes

goal generation
processes

unsurfaced goals

N. Hawes. A survey of motivation frameworks for intelligent systems. Artificial Intelligence, 175(5-6):1020 — 1036, 2011.

J. L. Wyatt, A. Aydemir, M. Brenner, M. Hanheide, N. Hawes, P. Jensfelt, M. Kristan, G.-J. M. Kruijff, P. Lison, A. Pronobis, K. Sj66, D. Skoc€aj, A. Vrecko,
H. Zender, and M. Zillich. Self-understanding and self-extension: A systems and representational approach. /IEEE Transactions on Autonomous
Mental Development, 2(4):282 — 303, December 2010.



N. Hawes, M. Hanheide, J. Hargreaves, B. Page, H. Zender, and P. Jensfelt. Home alone: Autonomous extension and correction of spatial
representations. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA ‘11), 2011.



activated goals

/\O/\OA

behaviour generation
Processes

ProCesses

O O goal management

surfaced goals

attention filter filtering processes

goal generation
processes

unsurfaced goals

N. Hawes, M. Hanheide, J. Hargreaves, B. Page, H. Zender, and P. Jensfelt. Home alone: Autonomous extension and correction of spatial
representations. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA ‘11), 2011.



activated goals

continual planning
A

ranked by cost, gain,
and attempts

activated top 1 goal

surfaced goals

attention filter filtered by priority
: and failures

goals generated to
explore, categorise
unsurfaced goals (high priority) and

patrol (low priority)

N. Hawes, M. Hanheide, J. Hargreaves, B. Page, H. Zender, and P. Jensfelt. Home alone: Autonomous extension and correction of spatial
representations. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA ‘11), 2011.



Go Dora, go go go!




18/21 runs were successful

5/18 required recovery from a
missed placeholder

1/18 required recovery from a mis-
detected door

13/18 required recovery from action
fallures and time-outs

N. Hawes, M. Hanheide, J. Hargreaves, B. Page, H. Zender, and P. Jensfelt. Home alone: Autonomous extension and correction of spatial
representations. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA ‘11), 2011.



Dora, get wme a
box of cornflakes.
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Robot Task Planning and Explanation
in Open and Uncertain Worlds
Hanheide, Hawes, Wyatt et al. Artificial Intelligence, 2015.

‘Dora, find me a magazine’

(exists (?0 - object)

(and (= (label ?0) magazine) (K (position ?20))))

But how can Dora create a plan for this”?



Default Knowledge
Graph

Action Models

Instance Assumptive
Epistemic
Physical

Object

A

Reading Material

Property

A ..

Room Room Property
is-a is-a is-a is- is-a is-a
P(has-obj)=0.8 \
Book Magazine |[<H Mtg Rm Corridor Office 2D Shape Visual Appearance
is-connected 's a isa
‘\ " ' Oblong Office appearance
' \ \ has-
. Y ' shape _

Placeholder 1

g




Effects

(move
:pre (and (connected ?from ?to)
(= (1s-1n ?a) ?from))

:eff (and (assign (is-1n ?a) ?to)

) )



Effects

(observe-object

:eff (when (= (i1is-1n ?0) ?pl)
(prob 0.7 (observe ?70))

) )



Effects

(move
:pre (and (connected ?from ?to)
(= (1s-1n ?a) ?from))

:eff (and (assign (i1s-1n ?a) ?to)
(K (1n-room ?to))))



Effects

(search-for-object

:eff (when (A (position ?0) ?room)
(K (position ?0))))



Object

is-a

Reading Material

is-a

is-a

Book

P(has-obj)=0.8

Property

is-a

Magazine |<}H

sis-connected
[ ]

-

is-a

Room Property

A%

e S “ ‘ is-a
RN \
Office W Visual Appearance
o
A A ;-\\ A

e

is-a
1

. Obk.. gJ Office appearance




Effects

(assumption i1s-rooml-office
:eff (A (1s-a rooml) office)
(prob 0.52)))

Assumptions about instance state from instance
state



Object

A

Reading Material

_sea

is-a

R ¥ 2 T
pov - Lo bt Fi@!&‘a’;" <
R = c’c"w —

.
e {l P(has-obj)=0.8

is-a

4
Book - | Magazine

Property

A e

Room Property

A %

is-a is-a

N\

2D Shape

Visual Appearance

Placeholder 1

A

is-a

A

is-a
1

Oblong

Office appearance

A



Effects

(assumption object-in-room
:pre (A (is-a ?room) ?room-type)
:eff (and
(A (1s-1n ?room ?obj-type) T)
(assign prob
(default-P (i1s-1in ?room-type ?obj-type))
)))

Assumptions about instance state from



Object

A

Reading Material

_sea

is-a

R ¥ 2 T
pov - Lo bt Fi@!&‘a’;" <
R = c’c"w —

.
e {l P(has-obj)=0.8

is-a

4
Book - | Magazine

Property

A e

Room Property

A %

is-a is-a

N\

2D Shape

Visual Appearance

Placeholder 1

A

is-a

A

is-a
1

Oblong

Office appearance

A



Object

Property
? is-a

? is-a
Reading Material

Room Room Property
is-a / \is-a is-a . is-a
is-

is-a is-a
P(has-obj)=0.8 \
Book Magazine |<}H Mtg Rm Corridor Office 2D Shape Visual Appearance
/ R '\‘ is-connected . * iS,'a isl-a
ASSl}ME(ls-a) \‘ ASSUME(ISv?) .‘ ' Oblong Office appearance
/" ASSUME(contains) . " . \  has- / 4
: ' % ' shape A /
C Object 1 ) \ . v /
A \ | ‘
ASSUME(has- (__ Room2 )
object)

ASSUME(is-in)

Placeholder 1



- Action Cost Prob. Status

movedomplacelplncebolderl 2 1.00 RUNN]NG

create-cones dora magazine room2 placeholderl 5 1.00

search-for-object dora magazine room2 placeholder! objectl 200 1.00
Total: 207 0.243






Object

Property
? is-a

? is-a
Reading Material

Room Room Property
is-a / \is-a is-a . is-a
is-

is-a is-a
P(has-obj)=0.8 \
Book Magazine |<}H Mtg Rm Corridor Office 2D Shape Visual Appearance
/ R '\‘ is-connected . * iS,'a isl-a
ASSl}ME(ls-a) \‘ ASSUME(ISv?) .‘ ' Oblong Office appearance
/" ASSUME(contains) . " . \  has- / 4
: ' % ' shape A /
C Object 1 ) \ . v /
A \ | ‘
ASSUME(has- (__ Room2 )
object)

ASSUME(is-in)

Placeholder 1



Action Models

Default Assumptive
Diagnostic

Default Knowledge
Graph

Action Models

Instance Assumptive
Epistemic
Physical

Planner Predicted
State
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