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A B O U T  M E

• Research interests in 
applying AI to make 
robots smarter 

• I’ve worked on robots and 
video games, planning, 
language, vision etc. 

• Coordinator of the EU 
STRANDS project (which I 
will draw on a lot) 

• Any questions, please just 
ask!
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A U T O N O M O U S  M O B I L E  
R O B O T S

What is the problem? The creation of 
autonomous mobile robots that act intelligently 
in real world domains.

Why is it hard? The integration of a range of 
different functionalities to create a robust, 
intelligent system is hard both in theory and 
practice



Wave 1  

Wave 2  

Wave 3  



Wave 1: We build worlds for robots  



Wave 1  

Wave 2  

Wave 3  



Wave 2: Robots move into our world



Wave 1  

Wave 2  

Wave 3  



F R E Q . P R O C E S S I N G O U T P U TF R E Q . P R O C E S S I N G O U T P U T

Asynch.
World model, planning, 

sensor anchoring/symbol 
grounding

Behaviour or task plans, 
actions at locations

<5Hz
Discretisation of 
continuous state, 

topological localisation

Navigation between 
sequence of discrete 

locations, generates paths

~15Hz
State estimation, 

continuous localisation
Trajectory planning, robot 

velocities

>30Hz
Hardware interfaces, 

drivers
Velocity control to motor 

control



A U T O N O M O U S  M O B I L E  R O B O T S



Shakey
SRI International 

1966 - 1972

• STRIPS 
• A* search algorithm 
• the Hough transform

http://en.wikipedia.org/wiki/A*_search_algorithm
http://en.wikipedia.org/wiki/Hough_transform


Minerva and Rhino
CMU/Bonn 

1995 - 1998?

• Dynamic Window  
• Topological Mapping 
• Particle Filtering



Dora
EU CogX Project 

2008 - 2012

• Conceptual Mapping 
• Motivation System 
• Knowledge Self-Extension



CoBot
CMU 

2009 - present

• 1,000km of autonomous 
localization and 
navigation! 

• Symbiotic autonomy 
• Task scheduling



STRANDS Robots
EU STRANDS Project 

2013 - present

• Aiming for 120 days 
autonomy in real-world 
environments 

• Qualitative representations 
• Modelling temporal 

dynamics
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K N O W L E D G E  O F  S PA C E

What is the problem? Giving robots an 
understanding of space

Why is it hard? Finding the right abstraction for 
the right problem, avoid complexity yet 
providing reasoning power



Qualitative representations 
of space and time

Compress/abstract multiple quantitative states 
into a single qualitative state

Often used to capture the inherent or assumed 
structure in a spatial or temporal domain

Representations are often relational, providing 
relative rather than absolute information





“Is the pig near the cow?” 
etc.



“Put the blue box to the 
right of the red box”







Qualitative Spatial Relations  
(QSRs) 



Akshaya Thippur et al. KTH-3D-TOTAL: A 3D Dataset for Discovering 
Spatial Structures for Long-Term Autonomous Learning. In SAIS’14.

Lars et al. Bootstrapping probabilistic models of qualitative 
spatial relations for active visual object search. In AAAI SS 
2014 on Qualitative Representations for Robots
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origin relatum 
(landmark)

referent 
(target)

Moratz, Nebel, and Freksa, Qualitative spatial reasoning 
about relative position. Spatial Cognition III, 2003.

Ternary Point Calculus

θ
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Position of cup relative to monitor 

Pω,λ(x | θ) = ︎ ΣwiN(x | μi, Σi) 



Position of cup relative to keyboard 





Where should a robot look for objects?



Where to stand?



Where to look?



Where to look?



What am I likely to see?





Where to look?



argmax ∑︎PQSR(vi | ω, Λ) In(vi, Viewcone(ψ))





Supporting planes vs QSRs 
10 trials  
3 out of 8 tables 
choose 1/500 sim. desks

L. Kunze, K. K. Doreswamy and N. Hawes.  
Using Qualitative Spatial Relations for 
Indirect Object Search. In ICRA’14. 



Supporting planes vs QSRs 
10 trials  
3 out of 8 tables 
choose 1/500 sim. desks

L. Kunze, K. K. Doreswamy and N. Hawes.  
Using Qualitative Spatial Relations for Indirect 
Object Search. In ICRA’14. 
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Search Results (Robot) 
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Qualitative Spatial Relations  
(QSRs) 

train: 19 desks, 3 scenes per desk = 57 scenes 
test: 1 desk, 3 scenes per desk = 3 scenes 



Lars Kunze et al. Combining Top-down Spatial Reasoning and Bottom-up Object 
Class Recognition for Scene Understanding. In IROS ’14. 
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“ U N D E R S TA N D I N G ”  
C H A N G E

What is the problem? Giving robots an 
understanding the dynamics of their world

Why is it hard? Change can come from all sorts 
of sources, with many causes: predictable and 
unpredictable, observable and unobservable



Envisioning the Effects of Robot Manipulation Actions 
using Physics-based Simulations  

Kunze and Beetz, Artificial Intelligence 2015 

The robot’s actions are a major source of change in tasks

How can action parameters be chosen such 
that the change is the desired outcome

Envisioning: logic to simulation to logic again 



How to pour the pancake mix? 
where to hold it? 
at what height? 
at what angle? 
how long for?



How to flip the pancake? 
how to push the spatula? 
at what angle? 
with how much force? 
how to lift?



Logical 
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Behavior/
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Humans cause a lot of the environmental 
dynamics experienced by a robot



Action Recognition

Build models of actions

Activity/Action/Plan/Intent/Event  
Recognition/Recognition/Prediction/Forecasting

Recognise when a human is performing an action

Predict the next action in the activity

This is a very large and diverse field



Requires knowledge of space and time

Build models of actions

Recognise when a human is performing an action

Predict the next action in the activity

plus learning and probabilistic reasoning



Chapter 1 2 Introduction

Figure 1.1: Three different domains - aircraft apron, kitchen, football match - where
objects are interacting with each other. Examples of associated event and object classes
are given below each of the respective domains.

knowledge about the event and object classes of any particular domain. The ability to
understand activities can be potentially useful for machines that learn from observation
and help humans carry out activities efficiently. Learning from observation can enable a
machine to adapt when placed in new circumstances, predict what is going to happen and
react accordingly, transfer learned knowledge to related domains, and invent new ways of
performing certain tasks. Moreover, since events, objects and their relationships are so
fundamentally related to natural language categories such as verbs, nouns and sentences
that relate them, this research task represents a small but potentially significant step to-
ward bridging the gap between perception, understanding and natural language.

Section 1.1 describes the key insights and the concepts that are central to the thesis.
Section 1.2 details the goals and the challenges that need to be overcome to meet the
goals. Section 1.3 describes an overview of the approach adopted in the thesis. Section 1.4
describes the novelty of the proposed approach and the significance of the work. Section
1.5 concludes this chapter by discussing an overview of the rest of the thesis.

1.1 Characterizing Activities

The following are the key concepts used to characterize activities: (i) domain; (ii) qual-
itative spatio-temporal relationships; (iii) interactions; (iv) event classes; (v) events; (vi)

Unsupervised Learning of Event and  
Object Classes from Video  

Sridhar, PhD Thesis, 2010. 



Tony Cohn et al, University of Leeds for the RACE Project



Unsupervised Learning of Event Classes from Video  
Sridhar, Cohn and Hogg. In AAAI’10. 

Automatically learn models of activities from video,  
then recognise them in new videos

Events are sequences of spatial interactions 
between objects

Activities are collections of events  
with related objects that cooccur. 



Chapter 3 50 Representation of Interactions

6

4

Figure 3.1: An interaction is depicted below in a schematic form, as a sequence of three
distinct qualitative spatial states. An embedding of this sequence by concrete objects in
space and time is shown above.

tial states that characterize the interaction. An example of an interaction between three
abstract region histories and a corresponding embedding by real objects in space and time
is shown in Fig. 3.1.

This chapter focusses on three aspects: (i) interactions and their relational descrip-
tions; (ii) a similarity between these relational descriptions; (iii) relationship between
interactions and their embeddings in space and time.

The first focus of this chapter is to provide a relational description of interactions in
terms of qualitative spatial and temporal relationships between the corresponding region
histories. When the relational description of an interaction is exemplified by region his-
tories that correspond to a concrete set of observable objects, these objects are regarded
as an embedding of the interaction in time and space. However, the interaction itself is an
abstraction that has no reference to specific details of embeddings such as spatial location
and temporal durations in which the corresponding objects are observed. The relational
description takes the form of a tripartite graph structure called an interaction graph.

The second focus of this chapter is to define a similarity measure on relational de-
scriptions in order to compare interactions spatio-temporally i.e. on the basis of their
qualitative spatio-temporal relationships. This similarity measure is used for clustering
interactions and will be useful for the purposes of learning from this relational represen-
tation in chapter 4.

The final focus of the chapter is the relationships between interactions and their em-
beddings in space and time. The first part deals with mapping a set of tracks from video

Unsupervised Learning of Event and  
Object Classes from Video  

Sridhar, PhD Thesis, 2010. 



4 j. chen et al

Figure 1 The eight jointly exhaustive and pairwise disjoint relations of RCC8. The arrows show
which relation is the next relation a configuration would transit to, assuming the continuous movements
or deformations. This structure has been called a continuity network(p.295, Cohn et al., 1997) or a
conceptual neighborhood(p.7, Cohn & Hazarika,2001;p.564, Cohn & Renz, 2007)

2005; Egenhofer and Franzosa, 1991, 1995; Egenhofer and Herring, 1991; Egenhofer and Sharma,
1993; Egenhofer and Vasardani, 2007; Egenhofer et al., 1994a,b) are the two best known
approaches for representing and reasoning with topological relations; most existing approaches
are extensions or improvements of them.

RCC is based on a reflexive and symmetric primitive relation between spatial regions C(x, y).
The intended topological interpretation of C(x, y) is that two regions x and y are connected
if and only if their topological closures share a common point where the spatial regions are
non-empty regular subsets of some topological space. It does not require the regions be simple
ones i.e., they might consist of (multiple) disconnected pieces. Among the number of relations
defined by C(x, y), some relations are of particular interests: DC(x, y), P(x, y), PP(x, y),
EQ(x, y), O(x, y), PO(x, y), DR(x, y), EC(x, y), TPP(x, y), NTPP(x, y) and P−1, PP−1, TPP−1

and NTPP−1, the converse of non-symmetrical relation P, PP, TPP and NTPP respectively.
Their formal definitions and the meaning under the intended interpretations, denoted after the
double slash are the following(Randell et al., 1992b; Renz, 2002).

DC(x, y) ≡def ¬C(x, y) //x is disconnected from y
P(x, y) ≡def ∀z(C(z, x)→C(z, y)) //x is a part of y

PP(x, y) ≡def P(x, y)∧¬P(y, x) //x is a proper part of y
EQ(x, y) ≡def P(x, y)∧P(y, x) //x equals y

O(x, y) ≡def ∃ z(P(z, x)∧P(z, y)) //x overlaps y
PO(x, y) ≡def O(x, y)∧¬P(x, y) ∧¬P(y, x) //x partially overlaps y
DR(x, y) ≡def ¬O(x, y) // x is discrete from y
EC(x, y) ≡def C(x, y) ∧ ¬O(x, y) // x is externally connected with y

TPP(x, y) ≡def PP(x, y) ∧ ∃z(EC(z, x)∧EC(z, y)) // x is a tangential proper part of y
NTPP(x, y) ≡def PP(x, y) ∧ ¬∃z(EC(z, x)∧EC(z, y)) // x is a non-tangential proper part of y

P−1(x, y) ≡def P(y, x) // y is a part of x
PP−1(x, y) ≡def PP(y, x) // y is a proper part of x

TPP−1(x, y) ≡def TPP(y, x) // y is a tangential proper part of x
NTPP−1(x, y) ≡def NTPP(y, x) // y is a non-tangential proper part of x

By adding new primitive relations and functions, a much larger number of different relations
can be defined upon the C relation(Cohn and Hazarika, 2001).Here only presents a small fraction
of relations can be expressed by RCC theory. If some of the above relations can form a set of

The Region 
Connection Calculus

Qualitative spatial representation and reasoning with the region 
connection calculus. A. G. Cohn, B. Bennett, J. Gooday, and N. M. 
Gotts. GeoInformatica, 1(3):275–316, 1997. 



i before j

i meets j

j before i

j meets i

i overlaps j

i starts j

j finishes i

j starts i

j overlaps i

i finishes j

i during j

j during i

i equals j

J. F. Allen. Maintaining knowledge about temporal intervals. 
Communications of the ACM, 26(11):832– 843, 1983.

Allen’s Interval Algebra



time / frames

How can we segment events from this stream of data?

How can we compare events?
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Over the course of a video, 
common graph/event structure 

are extracted into classes 
following rules 
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Events in the same 
activity can share objects
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Figure 5: Representative samples from 5 out of 14 learned event classes are shown within the regions given by the gray boxes.
Events are shown as a sequence of images with bounding boxes on the relevant objects and corresponding descriptions above
these images. The following short forms are used for the corresponding object types : p - plane, l - loader, t - trolley, b - bridge,
pp - plane puller.

8 Experiments
The proposed framework was evaluated on real data of a
video showing servicing of aircraft between flights. A suit-
able set of parameters (�1 to �6) given in §4 for applica-
tion on to the real data is determined from synthetic data for
the following reason. These parameters influence the rela-
tive importance of the various factors in the generative pro-
cess such as (i) within class similarity; (ii) intra event graph
interactivity; (iii) number of classes; (iv) size of the event
graphs;(v) inter event graph interactivity; (vi) overlap. Even
though the relative importance may vary from domain to do-
main, it is assumed that many interesting activities are gener-
ated by a preference for greater values of factors (i),(ii),(iv)
and smaller values for (iii),(v),(vi). These assumptions of-
fer a promising solution for distinguishing events from other
less significant interactions for many domains.
Parameter Determination from Synthetic Data.

Synthetic data is constructed according to the generative
process outlined in §4. The number of classes varies be-
tween 3 and 5. The number of event graphs in each class
varies between 2 and 3, each with certain probability. Forty
event graphs are sampled from this distribution of event
classes and embedded in an activity graph such that 10%
of the event graphs have shared objects and 10% have inter-
actions between objects across different events. The activ-
ity graph thus generated is embedded as tracks. Since the
data is generated synthetically, the optimal interpretation is
known and the parameters (�1 to �6) can be determined as
follows. The optimal interpretation is first degraded using
the set of moves described in §7 and a set of 12 interpre-
tations is obtained. For these 12 interpretations, the param-
eters that produce a posterior distribution that most favours
the the optimal interpretation are regarded as a set of suit-
able parameters for real data. The 12 interpretations form
the horizontal axes of the two plots in Fig. 6 (interpreta-
tion 3 is the one predetermined as the optimal). The vertical
axes are their posterior probabilities in the first plot and the

within class similarity and interactivity in the second plot
respectively.

Real Data Set. The proposed method is evaluated on ap-
proximately 12 hours of video showing servicing of air-
craft between flights. The camera positioning for all the
eight turnarounds is the same, so we obtain the same view.
This dataset was chosen since it clearly contains structured
events. However the problem of learning is complex as
these may occur in parallel with objects shared between
events (e.g. the plane) and interactions between objects
across different events. Moreover, the tracking output intro-
duces more complexities that arise due to unstable bounding
boxes, missing detections, mistakes in tracking and the pres-
ence of noisy blobs.

Detection and Tracking. First, six visual appearance mod-
els are learned for object classes (1.Plane 2.Trolley 3.Car-
riage 4.Loader 5.Bridge 6.Plane Puller) from two hours of
video. Instances of these object classes are detected using
the technique in (Ott and Everingham 2009) and tracked us-
ing techniques in (Yu and Medioni 2008) for the rest of the
10 hours of video. Note that although the tracked objects
have types as a result of the detection based tracking tech-
nique that is used, the event learning procedure deliberately
ignores these in order not to be dependent on them. Thus in
principle, it could work equally with untyped tracks.

Evaluation by Qualitative Inspection A total of 14 event
classes with varying number of events were obtained with
the proposed framework. A qualitative inspection informs
that the framework has been able to discover several inter-
esting events which compose the set of activities in the air-
craft domain. A representative set of events are shown in
Fig. 5 from which the following observations can be made.
First, it can be seen that class 1 has been able to capture
very similar interactions between trolleys, loaders, planes
and bridges and these interactions usually span the entire
servicing a plane over 70000 image frames. A representative

1637



Action Recognition

Build models of actions

Recognise when a human is performing an action

Predict the next action in the activity

High-level/semantic 

representation of change





Spectral Analysis for Long-Term Robotic Mapping   
Krajník, Fentanes, Cielniak, Dondrup and Duckett. In ICRA’14.

Change in the environment is often the result of 
human activity

Human activities are often periodic

Other dynamics are periodic too (day/night etc.).
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Fig. 5.23. Examples of pictures taken from the IDOL2 database showing the in-
teriors of the rooms, variations observed over time and caused by activity in the
environment as well as introduced by changing illumination.

Semantic Modelling of Space. Pronobis, Jensfelt, Sjöö, 
Zender, Kruijff, Mozos, and Burgard. In volume 8 of Cognitive 
Systems Monographs, 2010. 
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Spectral Analysis for Long-Term Robotic Mapping   
Krajník, Fentanes, Cielniak, Dondrup and Duckett. In ICRA’14.

 Therefore use frequency analysis to learn and 
predict the dynamics of the environment

Change in the environment is often the result of 
human activity

Human activities are often periodic

Other dynamics are periodic too (day/night etc.).



probability of jth state: pj = P(sj = 1)

assuming binary states 
cell occupancy, door open/closed,  

feature presence/absence

probability of jth state at time t: pj(t)

Bayesian models tell us how to update pj(t) given uncertain 
observations, but assume a  

static world

value of jth state: sj = {0, 1}



frequency spectrum of sequence: S(ω) = FT(s(t))

use the Fourier Transform 
to get a compact, predictive model for s

the spectral model Ƥ is the n most 
prominent frequencies S(ω)

sequence of states: s(t)

Ƥ can be used to generate a smoothed sequence s̃(t)
and a predicted sequence s′(t)  and outlier set O



F (!) consists of a finite set of complex numbers. For more
details on the Fourier transform, refer to [22].

B. The spectral model
The proposed temporal extension applies to world models

that represent the environment as a set of independent
components, which can be in two distinct states that we
denote as 0 and 1. Let us assume that the uncertainty of
each state sj = {0, 1} can be represented by its probability
of being 1, i.e. pj = P (sj = 1). Now assume that sj is
not static, but a function of time sj(t) that is affected by a
set of hidden periodical processes that can be identified by
the Fourier Transform. Since the state of individual world
components is assumed to be independent, the use of the
Fourier transform can be explained on the state s(t) of a
single world component.

1) Spectral model representation: Let the temporal se-
quence of binary states be denoted as s(t). First, we calculate
the frequency spectrum of the sequence by means of a
Fourier Transform as S(!) = FT (s(t)). Since we assume
that s(t) is periodic, the frequency spectrum S(!) is discrete
and finite. Therefore, we can select the l most prominent (i.e.
of highest absolute value) coefficients Si of the spectrum
S(!) and store them along with their frequencies !i in the
spectral model P . The stored coefficients can be used to
recover the smoothed sequence s̃(t) of s(t) by means of
the Inverse Fourier Transform of the model stored in P .
Substituting all negative values of s̃(t) by zeros and limiting
the maximal value of sm(t) to 1 gives us a function p(t) that
can be considered as a probability estimate of s(t). Thus,
thresholding the probability p(t) allows us to calculate an
estimate s

0(t) of the original state s(t). To allow lossless
representation of the original signal, the differences between
s

0(t) and s(t) are stored in an outlier set O that is �-encoded,
see Figure 2.

Thus, our model of the state consists of a finite set P
representing the periodic processes and an outlier set O.
The set P consists of l triples abs(Pi), arg(Pi) and !i,
which describe the amplitudes, phase shifts and frequencies
of the model spectrum. Each such triple is an estimate of
the importance, time offset and periodicity of one particular
periodical process influencing the state s(t). The number
of modeled processes l (i.e. the number of triples in P)
defines the ‘order’ of the spectral model. The outlier set O
contains instances when the state s(t) does not match the
state s0(t) calculated as p(t) > 0.5. The set O is implemented
as a sequence of values, indicating the starts and ends of
time intervals when the observed and predicted states do not
match, i.e. s0(t) 6= s(t).

2) Spectral model operations: To be able to create, main-
tain and use this representation, we define four operations:
state estimation, state reconstruction, measurement addition
and model update.

a) State estimation: The estimation of the state s

0(t)
from the spectral model allows us to interpolate or even
predict the model’s state s(t) by the following equation:

s

0(t) = p(t) > 0.5 = &(IFT (P)) > 0.5, (1)

where &(x) is a saturation function that limits the values of
x in interval < 0, 1 >. The idea behind this equation is to
reconstruct the probability p(t) from the spectrum P and set
the state estimate s

0(t) to 1 if p(t) exceeds 0.5.
b) State reconstruction: However, the function of s(t)

is not composed only of periodic processes and s

0(t) might
not be equal to s(t). To allow lossless representation of the
function s(t), we employ the outlier set O and reconstruct
the original state s(t) means of the following equation:

s(t) = s

0(t)� (t /2 O) = (IFT (P) > 0.5)� (t /2 O), (2)

where � represents a binary XOR operation. The equation
first estimates s

0(t) from the spectrum P by means of
equation 1 and then inverts the result if t belongs to the
set of outliers O.

c) Measurement addition: When a new observation of
a real state s

m(t) is obtained at time t, we calculate s(t)
by means of Equation (2) and if it differs from s

m(t), the
current time t is added to the set O:

s

m(t) 6= ((IFT (P) > 0.5)� (t /2 O)) ! O = O [ t. (3)

Since p(t) does not predict s(t) with perfect accuracy, the
set O is likely to grow larger as measurements are added.

d) Model update: To update the spectral model, we
reconstruct the state s(t) in the desired time interval <

tstart, tend > and calculate its spectrum P . Again, we
select the l coefficients with highest absolute values |Pi| and
reconstruct the outlier set O by means of Equation 3. In
a typical situation, the updated spectrum P would reflect
s(t) more accurately, causing reduction of the set O. Note,
that the spectral model order l can be changed prior to the
update step without causing any loss of information. Due
to the fact that the Fourier Transform is a well-established
mathematical tool and its implementations are optimized
for speed, the model update is computationally efficient.
Calculating a frequency spectrum of an s(t) with 1000000
samples takes less then 100 ms on an entry level PC.
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arg(P): {  0,  1.57, 1.57 }
Frequencies: { 0, 0.2, 0.6 }
Outlier set O: { 3.7, 3.8 }

Fig. 2. An example of the measured state and its spectral model. The left
part shows the time series of the measured state s(t), probability estimate
p(t), predicted state s0(t) and outlier set O. The upper right part shows
the absolute values of the frequency spectrum of s(t) and indicates the
spectral coefficients, which are included in the model. The last part is a text
representation of the model itself.
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(estimation xor with outlier set)

state reconstruction



18 million values. After this week, two additional full-day
datasets (July 31 and August 2) were gathered.

B. The laboratory datasets

To gather the second dataset the robot was programmed
to visit three designated areas of the robotics lab every five
minutes. Each time an area was visited, the robot created
a 2D and 3D point cloud and analysed the onboard color
camera image to check for the presence of people. Thus,
the robot created three datasets of different dimensionality
in three different places, see Figure 3. We will refer to these
datasets as Lab-1D, Lab-2D and Lab-3D.

Fig. 3. Robot view of two locations of the ‘Lab’ dataset.

The data gathering process started on August 2013 and is
still in progress. For this study, we use the data collected dur-
ing the first week of September consisting of approximately
12,000 point clouds and 6,000 results of people detection.

The autonomous patrolling has been based on combination
of the ROS nav stack and the visual localization method
proposed in [21]. The robot reports its status regularly, so
the occational failures can be dealt with immediatelly [22],
by using a social network interface that tells us the state of
the robot.

IV. ALGORITHM PERFORMANCE

To answer the questions set in Section II-D, we analyse the
performance of the proposed representation on the datasets
described in Section III.

A. Model accuracy and efficiency

Knowing the coefficients Pi(!i) of the spectrum P allows
us to calculate an estimate s0(t) of the original state s(t).
A natural concern is the accuracy of reconstruction of s0(t),
which affects the prediction capabilities of the model and the
size of the outlier set O. One can expect that increasing the
number of spectral parameters will increase the reconstruc-
tion accuracy. However, as the number of parameters grows,
the model becomes more adjusted to the specific time series
of s(t) and loses its generality. This loss of generality would
hamper the ability of the model to predict the environment
state in the future.

We define the accuracy of the spectral model q(ta, tb) as
the ratio of the correctly estimated signal s0(t) on a given
time interval t 2 ht0, t1i to the length of the interval:

q(ta, tb) =
1

tb � ta

tbZ

ta

|s0(t)� s(t)|dt. (4)

In our case, q = q(0, T ) can be directly calculated from the
values ti stored in the outlier set O by

q =
1

T

|O|/2�1X

k=0

(t2k+1 � t2k). (5)

Suppose that the spectrum P was estimated for s(t) within
interval htc, tdi and q is calculated for an interval hta, tbi.
If tc  ta, then q(ta, tb) relates to the accuracy of model
prediction and if hta, tbi 2 htc, tdi, then q relates to the
accuracy of reconstruction.

To estimate the dependence of the accuracy of reconstruc-
tion qr and prediction qp on the number of model parameters,
we built a spectral model of the one-week-long ‘Office’
dataset. The accuracy of reconstruction qr was calculated
as the difference in the original and reconstructed signal.
Moreover, we calculated the accuracies of prediction qp1 and
qp2 for two days of the following week, see Figure 4. The

Measurements used to establish the model
Predicted probability estimate

Predicted future state
Measured state − dataset 1
Measured state − dataset 2

Tue Thu Sat Mon Wed Fri Sun

Fig. 4. Comparison of predicted and real values - office dataset.

dependence of the reconstruction and prediction accuracy on
the number of parameters of the spectral model is shown in
Figure 5. The Figure shows that the spectral model order

Fig. 5. Model accuracy vs. model complexity - office dataset.

of 15 parameters achieves 95% reconstruction accuracy. As
expected, the reconstruction accuracy qr increases monoton-
ically with the number of spectral model coefficients j, but
the prediction quality does not. The local maxima of qp1

Office door open/closed model.  
Compresses 18 million readings to 3 frequencies



and qp2 at l = 2 and l = 3 suggest that for the purpose of
prediction, one should use a spectral model of order 3.

The test indicates that the spectral model allows to rep-
resent millions of measurements with only a few complex
numbers. Thus, the spectral representation P without the
outlier set O achieves compression ratios in the order of
millions while losing less than 5% of information. The full
model is composed of 15 triples of spectrum P and 160
values in the set O. Thus, the proposed model achieves
lossless compression of the temporal data with a compression
ratio reaching ⇠ 105.

Since the optimal order of the model for signal reconstruc-
tion has been estimated as 15, we used this setting for the
Lab-nD datasets as well. The reconstruction quality of the
‘Office’ dataset was 0.95 and the corresponding values for
the ‘Lab’ datasets are shown in Table I.

TABLE I
RECONSTRUCTION QUALITY FOR DIFFERENT DATASETS

Dataset Lab-1D Lab-2D Lab-3D

Location 1 0.95 0.99 0.99
Location 2 0.98 0.97 1.00
Location 3 0.94 0.98 0.99

The data indicate that the model size remains more or
less constant regardless of the time span it covers. Therefore,
higher compression rates are achieved simply by representing
larger datasets. On average, the proposed model can predict
the environment state with 97% accuracy.

B. Anomaly detection

An anomalous situation can be defined as a local state of
the world which deviates from the internal world model of
the robot. Since our model can predict the local state s(t)
with a given conficence value by Equation 3, we can assume
that a measurement sm(t) is anomalous with confidence level
c if

sm(t) 6= (IFT (P ) > c). (6)

While setting c too high would lower the algorithm’s sen-
sitivity to anomalies, low c would result in an increased
number of false positives. An optimal confidence level c can
be calculated from the statistical properties of p(t) and the
requirements for the number of false positives and failed
detections. Figure 6 shows the results of anomaly detection
for the office dataset. In this case, the confidence level c
was set to 95% and the anomalous situations correspond to
a room being accessed at night.

Figure 7 shows the results of anomaly detection for the
Lab-1D dataset. Similarly to the previous case, the confi-
dence level c was set to 90% and the anomalous situations
correspond to the room being accessed at night or a sudden
absence of all people just before and after a meeting, see
Figures 8 and 3.

These examples demonstrate how the model adapts its
inner dynamics to represent the observed environment. The

Measured state
Probability estimate
Reconstructed state

Anomaly detector

Tue Wed Thu Fri Sat Sun Mon

Fig. 6. Anomaly detection for the ‘Office’ dataset.

Probability of person present
Anomaly detection

Sun Mon Tue Wed Thu Fri Sat

Person detected

displayed in Figure 8
Anomalous situations

Fig. 7. Anomaly detection for the three locations of the Lab-1D dataset.

Fig. 8. Anomalous situations in the ‘Lab’ environment. Left: Workplace
empty on Friday early afternoon. Right: Person entering the room at night.

differences between the inner dynamics and real observations
allow for natural detection of anomalous situations with
arbitrary confidence levels. Figure 7 shows how the spectral
models for each laboratory location adapt to the particular
location’s dynamics. This results in a different anomaly
detector for each location. For example, a person presence
on Monday morning is considered normal for location 1, but
triggers the anomaly detector on locations 2 and 3.

C. Building spatiotemporal maps for mobile robotics

The quality of the aforementioned datasets was not sig-
nificantly affected by the sensor position, because either
the sensor was static or the measurement did not require

and qp2 at l = 2 and l = 3 suggest that for the purpose of
prediction, one should use a spectral model of order 3.

The test indicates that the spectral model allows to rep-
resent millions of measurements with only a few complex
numbers. Thus, the spectral representation P without the
outlier set O achieves compression ratios in the order of
millions while losing less than 5% of information. The full
model is composed of 15 triples of spectrum P and 160
values in the set O. Thus, the proposed model achieves
lossless compression of the temporal data with a compression
ratio reaching ⇠ 105.

Since the optimal order of the model for signal reconstruc-
tion has been estimated as 15, we used this setting for the
Lab-nD datasets as well. The reconstruction quality of the
‘Office’ dataset was 0.95 and the corresponding values for
the ‘Lab’ datasets are shown in Table I.

TABLE I
RECONSTRUCTION QUALITY FOR DIFFERENT DATASETS

Dataset Lab-1D Lab-2D Lab-3D

Location 1 0.95 0.99 0.99
Location 2 0.98 0.97 1.00
Location 3 0.94 0.98 0.99

The data indicate that the model size remains more or
less constant regardless of the time span it covers. Therefore,
higher compression rates are achieved simply by representing
larger datasets. On average, the proposed model can predict
the environment state with 97% accuracy.

B. Anomaly detection

An anomalous situation can be defined as a local state of
the world which deviates from the internal world model of
the robot. Since our model can predict the local state s(t)
with a given conficence value by Equation 3, we can assume
that a measurement sm(t) is anomalous with confidence level
c if

sm(t) 6= (IFT (P ) > c). (6)

While setting c too high would lower the algorithm’s sen-
sitivity to anomalies, low c would result in an increased
number of false positives. An optimal confidence level c can
be calculated from the statistical properties of p(t) and the
requirements for the number of false positives and failed
detections. Figure 6 shows the results of anomaly detection
for the office dataset. In this case, the confidence level c
was set to 95% and the anomalous situations correspond to
a room being accessed at night.

Figure 7 shows the results of anomaly detection for the
Lab-1D dataset. Similarly to the previous case, the confi-
dence level c was set to 90% and the anomalous situations
correspond to the room being accessed at night or a sudden
absence of all people just before and after a meeting, see
Figures 8 and 3.

These examples demonstrate how the model adapts its
inner dynamics to represent the observed environment. The

Measured state
Probability estimate
Reconstructed state

Anomaly detector

Tue Wed Thu Fri Sat Sun Mon

Fig. 6. Anomaly detection for the ‘Office’ dataset.

Probability of person present
Anomaly detection

Sun Mon Tue Wed Thu Fri Sat

Person detected

displayed in Figure 8
Anomalous situations

Fig. 7. Anomaly detection for the three locations of the Lab-1D dataset.

Fig. 8. Anomalous situations in the ‘Lab’ environment. Left: Workplace
empty on Friday early afternoon. Right: Person entering the room at night.

differences between the inner dynamics and real observations
allow for natural detection of anomalous situations with
arbitrary confidence levels. Figure 7 shows how the spectral
models for each laboratory location adapt to the particular
location’s dynamics. This results in a different anomaly
detector for each location. For example, a person presence
on Monday morning is considered normal for location 1, but
triggers the anomaly detector on locations 2 and 3.

C. Building spatiotemporal maps for mobile robotics

The quality of the aforementioned datasets was not sig-
nificantly affected by the sensor position, because either
the sensor was static or the measurement did not require

and qp2 at l = 2 and l = 3 suggest that for the purpose of
prediction, one should use a spectral model of order 3.

The test indicates that the spectral model allows to rep-
resent millions of measurements with only a few complex
numbers. Thus, the spectral representation P without the
outlier set O achieves compression ratios in the order of
millions while losing less than 5% of information. The full
model is composed of 15 triples of spectrum P and 160
values in the set O. Thus, the proposed model achieves
lossless compression of the temporal data with a compression
ratio reaching ⇠ 105.

Since the optimal order of the model for signal reconstruc-
tion has been estimated as 15, we used this setting for the
Lab-nD datasets as well. The reconstruction quality of the
‘Office’ dataset was 0.95 and the corresponding values for
the ‘Lab’ datasets are shown in Table I.

TABLE I
RECONSTRUCTION QUALITY FOR DIFFERENT DATASETS

Dataset Lab-1D Lab-2D Lab-3D

Location 1 0.95 0.99 0.99
Location 2 0.98 0.97 1.00
Location 3 0.94 0.98 0.99

The data indicate that the model size remains more or
less constant regardless of the time span it covers. Therefore,
higher compression rates are achieved simply by representing
larger datasets. On average, the proposed model can predict
the environment state with 97% accuracy.

B. Anomaly detection

An anomalous situation can be defined as a local state of
the world which deviates from the internal world model of
the robot. Since our model can predict the local state s(t)
with a given conficence value by Equation 3, we can assume
that a measurement sm(t) is anomalous with confidence level
c if

sm(t) 6= (IFT (P ) > c). (6)

While setting c too high would lower the algorithm’s sen-
sitivity to anomalies, low c would result in an increased
number of false positives. An optimal confidence level c can
be calculated from the statistical properties of p(t) and the
requirements for the number of false positives and failed
detections. Figure 6 shows the results of anomaly detection
for the office dataset. In this case, the confidence level c
was set to 95% and the anomalous situations correspond to
a room being accessed at night.

Figure 7 shows the results of anomaly detection for the
Lab-1D dataset. Similarly to the previous case, the confi-
dence level c was set to 90% and the anomalous situations
correspond to the room being accessed at night or a sudden
absence of all people just before and after a meeting, see
Figures 8 and 3.

These examples demonstrate how the model adapts its
inner dynamics to represent the observed environment. The

Measured state
Probability estimate
Reconstructed state

Anomaly detector

Tue Wed Thu Fri Sat Sun Mon

Fig. 6. Anomaly detection for the ‘Office’ dataset.

Probability of person present
Anomaly detection

Sun Mon Tue Wed Thu Fri Sat

Person detected

displayed in Figure 8
Anomalous situations

Fig. 7. Anomaly detection for the three locations of the Lab-1D dataset.

Fig. 8. Anomalous situations in the ‘Lab’ environment. Left: Workplace
empty on Friday early afternoon. Right: Person entering the room at night.

differences between the inner dynamics and real observations
allow for natural detection of anomalous situations with
arbitrary confidence levels. Figure 7 shows how the spectral
models for each laboratory location adapt to the particular
location’s dynamics. This results in a different anomaly
detector for each location. For example, a person presence
on Monday morning is considered normal for location 1, but
triggers the anomaly detector on locations 2 and 3.

C. Building spatiotemporal maps for mobile robotics

The quality of the aforementioned datasets was not sig-
nificantly affected by the sensor position, because either
the sensor was static or the measurement did not require



https://youtu.be/Qw1kS_5zVwE



errors are presented in Table I. An error occurs when
the robot matches its observation with one from a wrong
topological location. The experimental results in Table I

TABLE I
OVERALL LOCALIZATION ERROR (%)

Image Occupancy
Model Model features grids
type order Nov Feb Nov Feb

statical - 35% 45% 21% 17%
spectral 1 25% 26% 14% 13%
spectral 2 22% 27% 14% 8%
spectral 3 18% 24% 14% 17%
spectral 4 17% 29% 7% 17%

indicate that modelling the environment by our approach
reduces the localization error. Moreover, the results show that
while the predictive capability of high-order temporal models
is better in short-term horizons (November dataset), models
that include one or two periodic processes perform better
in the long term (February dataset). The most important
fact is that while the error rate of the static world models
increased in the long term, the dynamic models of lower
orders perform similarly. One can also see that increasing the
number of modelled processes is beneficial only for short-
term predictions because only the most significant processes
are persistent over long-time periods.

VI. CONCLUSION

A novel approach for mobile robot localization in chang-
ing environments has been presented. The approach is
based on spatio-temporal mapping in the context of mobile
robotics. We assume that that in a mid- to long-term per-
spective, the environment’s appearance is affected by a set
of hidden, periodic processes. We assume that the dynamics
of the environment can be described by the frequency,
amplitude and time shift of these processes.

To identify the parameters of these processes and to
predict the environment’s local state we use the direct and
inverse Fourier transform. The core of the proposed temporal
representation is composed of the most prominent frequency
components of the Fourier spectrum – these relate to the most
important periodical processes influencing the environment.

To evaluate the applicability of the method for mobile
robot localization in changing environments, we enabled
the robot to learn about the environment dynamics by au-
tonomously patrolling an office environment for a period of
one week, during which the robot built two types of spatio-
temporal models of eight office locations with different
dynamics. The applicability of the spatio-temporal models
learned has been tested in a topological localization scenario,
where the robot had to estimate its location based on its
current observation and the spatio-temporal models gathered.
Short and long term scenarios were considered. In the first
one, the robot had to recognize its position during a 24 hour
operation on the day following the week the models were

created. In the long-term test, we repeated the procedure after
three months with the same spatio-temporal models.

The results show that the proposed approach significantly
increased the localization success rate compared to the
static models, indicating that the knowledge of the assumed
periodic processes in the environment helps to explain a
significant part of the environment variations observed.
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What is the problem? The known knowns, the 
known unknowns, the unknown unknowns…

Why is it hard? Because the open world is very, 
very open



A Frontier-Based Approach for Autonomous Exploration    
Yamauchi. In CIRA ‘97.

For mobile robots a unknown space  
is a crucial problem.

Exploration can be driven using frontiers.

These are boundaries between known, open 
space and the unknown

So autonomous exploration is a desirable capability
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Dora, get me a 
 box of cornflakes.



I don’t know  
where  

the cornflakes are.







Instance Knowledge

Placeholder 1 Place 1

is-connected

Relational Map



Robot Task Planning and Explanation  
in Open and Uncertain Worlds    

Hanheide, Hawes, Wyatt et al. Artificial Intelligence, 2015.

“Dora, find me a magazine”

(exists (?o - object) 

        (and (= (label ?o) magazine) (K (position ?o)))) 

But how can Dora create a plan for this?
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Physical Effects

(move
:pre (and (connected ?from ?to)
          (= (is-in ?a) ?from))

:eff (and (assign (is-in ?a) ?to)
     ))



Probabilistic Effects

(observe-object
. . .

:eff (when (= (is-in ?o) ?pl)
           (prob 0.7 (observe ?o))
     ))



(move
:pre (and (connected ?from ?to)
          (= (is-in ?a) ?from))

:eff (and (assign (is-in ?a) ?to)
          (K (in-room ?to))))

Knowledge Effects



(search-for-object
. . .

:eff (when (A (position ?o) ?room)
           (K (position ?o))))

Conditional Effects
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(assumption is-room1-office
:eff (A (is-a room1) office)
        (prob 0.52)))

Assumptions about instance state from instance 
state

Assumptive Effects
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(assumption object-in-room
  :pre (A (is-a ?room) ?room-type)
  :eff (and 

  (A (is-in ?room ?obj-type) T)
  (assign prob 
   (default-P (is-in ?room-type ?obj-type))
  )))

Assumptions about instance state from default 
knowledge

Assumptive Effects
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Default Knowledge

Instance Knowledge

Default Knowledge 
Graph

Action Models

Instance Assumptive
Epistemic
Physical

Relational Map

Planner Predicted 
State

    

   

Diagnostic Knowledge

Action Models

Default Assumptive
Diagnostic





• Autonomous Mobile Robots 

• Knowledge of Space 

• Break 

• Understanding Change 

• The Unknown
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