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Two Problems in AI:���
Distinct, but Overlapping	


•  Problem 1:	

– What must a robot know, to be useful?	

– How can we harvest human knowledge, 

and  use it for robots?	


•  Problem 2:	

– What is mind?	

– How can a physical object have a mind?	

– What knowledge is foundational to a mind?	




An early triumph for GOFAI!	

•  Terry Winograd’s 

SHRDLU (1970)	

–  perception	


•  avoided, not solved	

–  understanding	


•  syntax, semantics, 
pragmatics, reference	


–  planning	

•  autonomous	


–  acting in the world	

•  simulated, but real	


•  A huge step forward!	




A Lack of Foundational Knowledge	

•  But . . .	


–  What is a block?	

–    or a pyramid or a box?	


•  Objects	

–  What is Put … on … ?	

–    or Pick … up … ?	


•  Actions	

–  Where is on?  or in?	


•  Places	

–  What are red? green? blue?  

big?	

•  Properties	


•  These must be learned!	




Foundational Knowledge���
Must Be Learned	


•  Symbolic representation and inference (GOFAI) 
are not enough.	

–  We need probability theory, machine learning, 

statistics, control theory, dynamical systems, and 
much else.	


•  The foundations of knowledge must be learned, 
by an embodied agent, embedded in its world.	

–  We are unlikely to be able to program by hand 

adequate representations of the complex world.	




John Searle’s Objection to AI	

•  The essence of his “Chinese Room” argument:	


–  An intelligent agent’s knowledge has meaning:  
reference to objects in the external world.	


–  Computation, as such, is syntactic (meaning-free) 
manipulation of symbol structures.	


•  Symbol structures can only refer to other symbols.	


–  Thus, the mind cannot be explained by computation.	


•  This argument has genuine weight.	

–  Enough to refute the possibility of AI?  No.	


•  But it does say something about the nature of mind.	


–  Where does the meaning come from?	




The Constructivist Agent Reply	

•  OK!  Knowledge (in robots or in humans) cannot 

refer to objects in the external, physical world.	

–  An agent senses the world, and acts within it.	

–  It has no direct access to things in the physical world!	


–  It constructs its own internal knowledge structures to 
track and explain those patterns of interaction.	


–  Reference is to constructed knowledge structures.	


–  These internal structures must correspond to the world 
reasonably well.	


–  If not, the agent could not survive.	


•  Our task is to show how this can actually work.	




Learning Foundational Knowledge���
Like a Baby	


– The baby, assailed by eyes, ears, nose, skin, 
and entrails at once, feels it all as one great 
blooming, buzzing confusion . . .  	


–  [William James, 1890]	


•  We’ve learned a lot about development since then.	

–  Some knowledge is learned over evolutionary time.	

–  We’re going to pretend it’s learned by the individual.	

–  Our focus is on the growing richness of the ontology.	


•  Ontology  =  What can be represented.	




A Bootstrap Learning Agenda	

•  Learning body space:	


–  Structure of sensory input and motor output;	

–  Control laws to achieve and maintain feature values;	


•  Learning the local spatial model:	

–  Structure of local space; places and paths;	

–  Describe static local space; treat dynamics as noise.	


•  Learning about dynamics --- objects and actions:	

–  Objects, and the actions that affect them;	

–  Relevant object properties, affordances, and tool use;	


•  Learn about goals, beliefs, and plans:	

–  A sequence of actions, in context, achieves a goal;	


•  Learn about other agents:	

–  . . . with their own beliefs and goals;  communication;	




Background	

•  Our cognitive mapping research 

provided a key insight.	

– High-level concepts (places and paths) 

can be abstracted from the behavior of 
low-level control laws, operating at the 
pixel level.	


•  Spatial Semantic Hierarchy	

–  Kuipers & Byun, JRAS, 1991	

–  Kuipers, AIJ, 2000	

–  Beeson, Modayil & Kuipers, IJRR, 2010	




Distinctive States	

•  A distinctive state (location plus orientation) is the 

isolated fixed-point of a hill-climbing control law.	


–  High-level concepts (places and paths) can be abstracted 
from the behavior of low-level control laws, which 
operate at the pixel level.	


x 
x’ 

a 

a x x’ 



Topological Abstraction	

•  A control law defines an attractor 	


–  that represents its basin of attraction	


[Kuipers & Byun, JRAS, 1991]	




Topological Abstraction	

•  A small, finite graph represents the structure of 

the behaviors in a continuous space.	




A Bridge Across the Canyon	

•  Years ago, we built a fragile, rickety bridge 

across a huge deep canyon.	

– Every part of that bridge can (and should) be 

improved.	

– But it got to the other side.	


•  How do we get from pixel-level sensors and 
effectors, without higher-level semantics,	

–  to space, objects, actions, goals, and plans?	




Lassie “sees” the world 
with a laser rangefinder	


•  180 ranges over 180° planar field 
of view	


•  About 13” above the ground plane	

•  10 - 12 scans per second	




The First Problem	


•  Given many disorganized pixel-level sensors, 
how does the agent learn to make sense of 
them?	


•  Related problems we won’t have time for:	

– Separating distinct sensor modalities	

– Understanding pixel-level effectors	


[Pierce & Kuipers, AIJ, 1997]	




Disorganized sensor:  180 “pixels”	




Structured Sensor Array	




The Egocentric Range Image	




Estimate Sensor Similarities	

•  Start with a disorganized “bag of pixels”	

•  Determine pairwise sensor distances	


•  This is l1 distance.	

–  Isomap uses l2 (Euclidean) distance.	


•  [Tenenbaum, et al, 2000] 	

– Olsson, et al [2006] uses mutual information.	

– Modayil [2010] uses Gaussian processes to 

identify sensor embeddings.	




Organization of each sensor array	

•  Place s0 … sk in ℜk according to d1(si,sj) 	

•  Use PCA to find dominant eigenvectors	


– Project into low-dimensional space (ℜ2)	

– Relax sensor positions to best match d1(si,sj) 	




Laser Rangefinder array	

•  The same method works, applied to real data from the 

laser rangefinder array (180 rays)	




The “Roving Eye”	




Structure of the “Roving Eye”	




The Egocentric Range Image	




The World-Centered Range Image	


The egocentric origin now has a pose and a trajectory! 



The World-Centered Range Image	




An occupancy grid includes history,���
making a static-world model	




A Static Model of Space	

•  Given a high-dimensional sensory stream zt,	


– we have learned a static model M of the world, 	

–  and the trajectory xt of the egocentric origin.	


•  G(M, xt) predicts and partially explains zt.	

– Greatly compresses the information in zt, in 

terms of smaller structures M and xt.	

– The error ε is the difference between prediction 

and observation.	




Statistical Learning Methods Used	


•  Correlation  (time-series and histograms)	

•  k-means and agglomerative clustering	

•  Multidimensional scaling	

•  Dimensionality reduction (PCA, Isomap)	

•  Sensory flow	

•  Image matching (ICP)	

•  Markov localization (max likelihood pose)	

•  . . . 	




The Second Problem:���
We need to learn Objects	


•  The static model M explains most observations.	


– Dynamic objects appear in the discrepancies. 	


•  Cluster noise pixels in space.	

– Track the clusters over time: interpret as objects.	

– Merge images to make shape models	


•  Modayil & Kuipers [2004, 2006, 2007, 2008].	




Identify Discrepancies	




Clustering into Objects	




Track Objects over Time	




Describe the Scene	


•  Describe the scene 
in terms of:	

– Static world	

– Robot’s own pose	

– Object in a fixed 

position	

– Object and 

trajectory	

•  Individual objects	


– Categories	




The Third Problem:���
Learn How Actions Affect Objects	

•  We have learned object attributes:	


–  position, orientation, shape	

–  in egocentric and world-centered frames.	


•  Do random movements (“motor babbling”)	

•  Record all interactions (attribute changes)	

•  Identify clusters in the data, describing:	


– Effect:  qualitative change of attribute	

– Prerequisite:  bounds on previous state	

– Motor:  signal to perform the action	




Learning Actions for Planning	

•  Find clusters in the data to describe:	


– Action = 〈Prereq,  Motor,  Effect〉	

•  Essentially the STRIPS representation for actions.	


•  For this mobile robot, the learnable actions:	

– Turn to face object or desired point.	

– Move to desired point in nearby space.	

– Push (Move, to get object to move also)	


•  Demonstrate use of learned objects & actions	

– Given:  goal location for specified object	

– Given:  simple back-chaining planner	




Using the Learned Actions	

•  Learn action properties.  Do a simple plan.	




The Constructivist Agent	

•  The agent constructs its own models of itself 

and its world:	

–  Agent’s own sensors and motor controls	

–  Ego- and world-centered spatial frames	

–  Objects, shapes, and localization	

–  Actions and their properties	


•  These are useful self-created abstractions, not 
knowledge of the environment provided by an 
external authority.	

–  Because they correspond well with the actual 

properties of the world, they guide effective action.	




A Bootstrap Learning Agenda	

•  Learning body space:	


–  Structure of sensory input and motor output;	

–  Control laws to achieve and maintain feature values.	


•  Learning the local spatial model:	

–  Structure of static local space; places and paths.	


•  Learning about objects and actions:	

–  Objects, and actions that affect them;	

–  Relevant object properties, affordances, and tool use.	


•  Learn about goals, beliefs, and plans:	

–  A sequence of actions, in context, achieves a goal.	


•  Learn about other agents:	

–  . . . with their own beliefs and goals;  communication.	




Moving from 2D to 3D	

•  Onward!  From mobile robots with lasers to 

humanoid robots with eyes, arms and hands.	


–  Object Semantic Hierarchy: a hierarchy of 
representations for learning models of 3D 
objects from streams of visual observations.	


•  Changhai Xu & B. Kuipers, OSH	


–  A hierarchy of actions:  Simultaneously learning 
improved models of actions, and a qualitative 
representation with the right distinctions.	


•  Jonathan Mugan & B. Kuipers, QLAP  	




Other Agents Have Goals and Beliefs	

•  To predict the behavior of an inanimate object,	


–  If you know the forces on that object, you can	

–  Infer the resulting acceleration and velocity.	


•  Or from its motion, you can infer the forces.	


•  To predict the behavior of an agent,	

–  If you know an agent’s goals and beliefs about the world,	

–  You can infer the actions it will take.	


•  Or from its actions, you can infer its goals and beliefs.	


•  A developing agent must learn a Theory of Mind.	




Living in a Society of Agents	

•  Learn to understand other agents	


–  Theory of Mind supports improved predictions.	


•  Learn by imitating other agents	

–  Observe the behavior of another agent.	

–  Infer the state space and reward for an RL problem.	

–  Practice to solve the RL problem.	


•  Learn rules to encourage cooperation with others.	

–  Cooperation produces better outcomes for everyone.	

–  Discourage or punish “free riders”.	
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A learning agent in action	



