Multiple Spatial Ontologies in Humans and Robots

Benjamin Kuipers
Computer Science & Engineering
University of Michigan

Human Cognitive Maps

- Humans use multiple representations
 - Topological maps of large-scale space
 - Metrical errors and distortions are common.
 - Topological errors are rare.
 - Some spatial knowledge is metrical.
 - Multiple frames of reference
 - Individual variation is everywhere:
 - with developmental stage
 - with experience in an environment
 - with individual cognitive style
 - Lynch, 1960; Piaget & Inhelder, 1967, . . .

Inspiration for Computational Models

- A computational model must be *sufficient* to produce the behavior it hopes to explain.
 - Therefore, it must have multiple representations.
 - It must also be capable of learning a cognitive map from observations, and using it to navigate.
- Knowledge of space must be grounded in perception and action.
 - A computational model of mind, including perception and action, is by definition a *robot*.

Scales and Ontologies of Space

- Distinguish scales of behavioral space.
 - Small-scale space
 - Within the agent's sensory horizon
 - Large-scale space
 - Beyond the agent's sensory horizon
- Distinguish *ontologies for spatial maps*.
 - Metrical mapping:
 - Within a single frame of reference, define location, heading, pose, distance, and shape.
 - Topological mapping:
 - Places, paths, and regions are related by connectivity, order, and containment.

Spatial Semantic Hierarchies

• The Basic SSH:

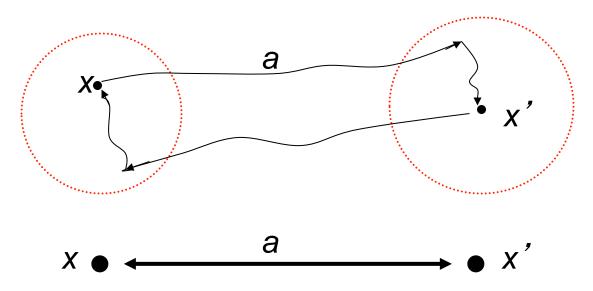
 Even without knowledge of sensors, hill-climbing control laws and distinctive states can define places, leading to topological maps.

• The Hybrid SSH:

- Often, we do know what the sensors are sensing.
- Use well-understood local mapping methods, and build the place abstraction and topological maps on top of that.

Distinctive States

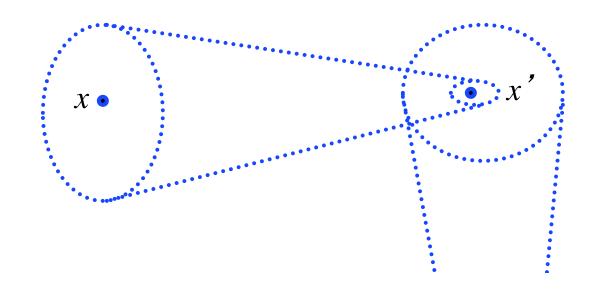
• A *distinctive state* (location plus orientation) is the isolated fixed-point of a hill-climbing control law.



- High-level concepts (places) can be abstracted from the behavior of low-level control laws, which operate at the pixel level.

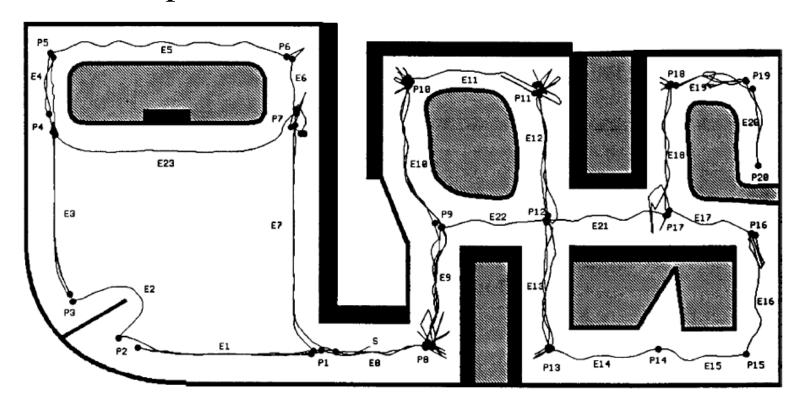
Distinctive States

- Between distinctive states, actions are *functionally* deterministic
 - if all final-state uncertainty is contained within every initial-state basin of attraction.
- Supports abstraction from continuous to discrete state space.
 - Hill-climbing eliminates cumulative position error.



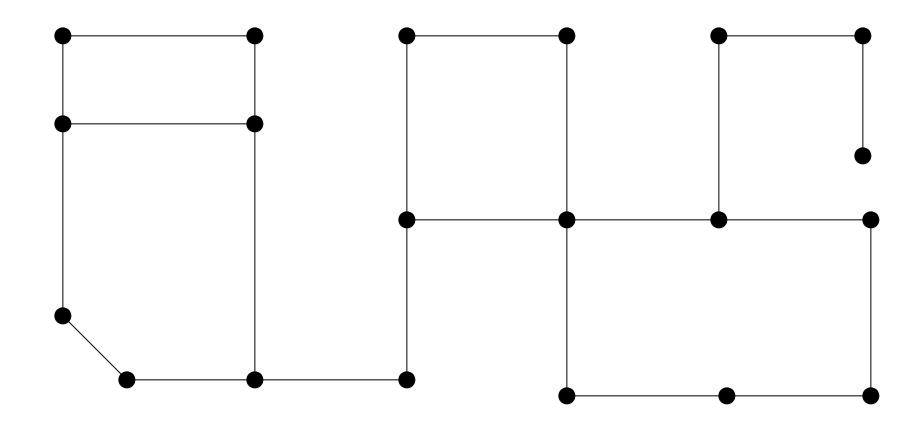
Topological Abstraction

- A control law defines an attractor
 - that represents its basin of attraction



Topological Abstraction

• A small, finite graph concisely represents the structure of behaviors in a continuous space.



Spatial Semantic Hierarchies

• The Basic SSH:

 Even without knowledge of sensors, hill-climbing control laws and distinctive states can define places, leading to topological maps.

• The Hybrid SSH:

- Often, we do know what the sensors are sensing.
- Use well-understood local mapping methods, and build the place abstraction and topological maps on top of that.

Local Metrical Mapping Works

- In small-scale space, modern laser-based SLAM methods work extremely well.
 - Great progress with visual SLAM, too.

	Metrical Mapping	Topological Mapping
Small-scale space	Local SLAM	
Large-scale space		

Global Metrical Mapping Is Hard

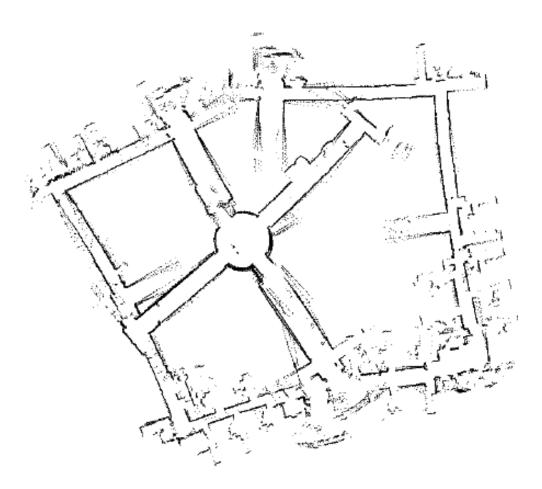
- Within a single global frame of reference over large-scale space, errors accumulate.
 - Sufficiently large loops can always be a problem.

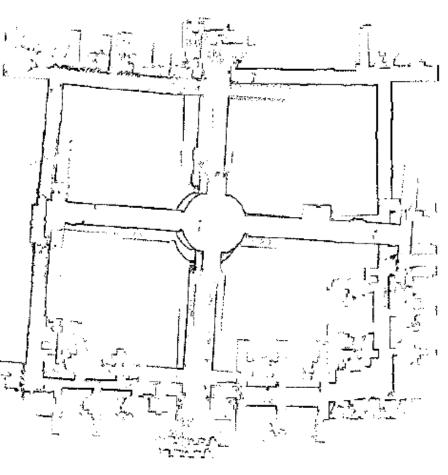
	Metrical Mapping	Topological Mapping
Small-scale space	Local SLAM	
Large-scale space	Cumulative errors Scalability	

Problem: Closing Large Loops

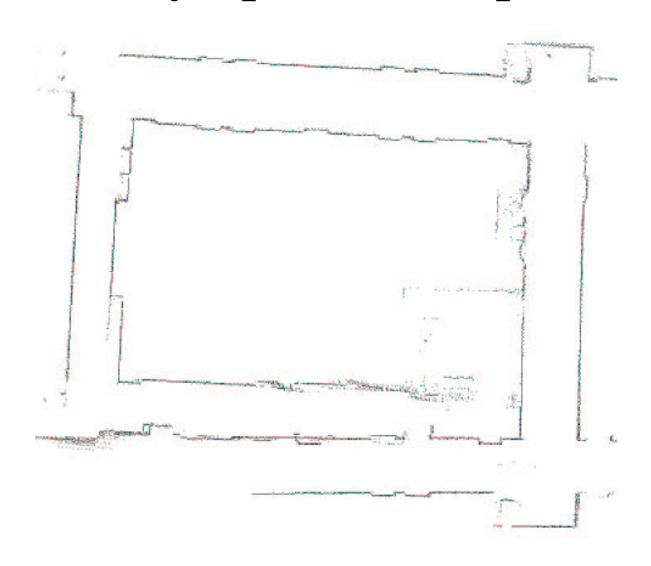
Raw Odometry

SLAM Corrected Odometry





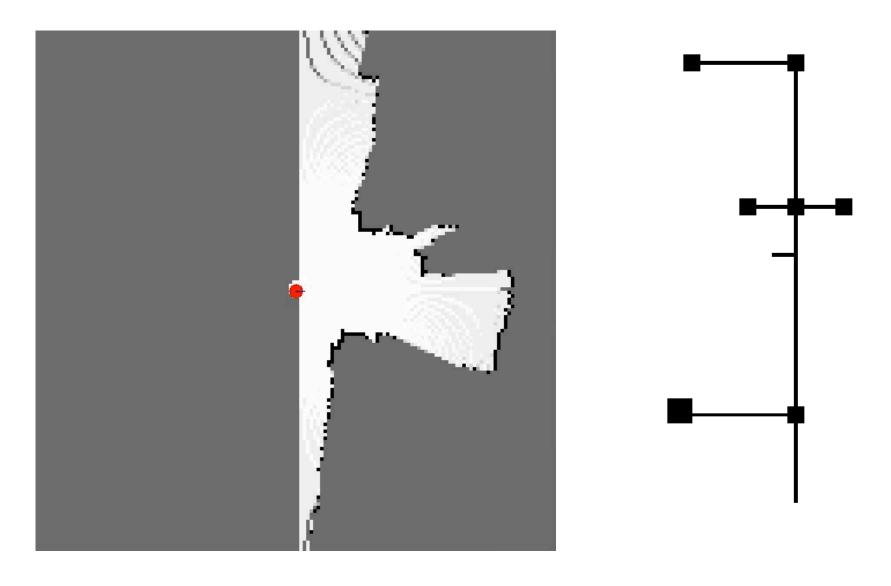
Local matching can find false, but locally optimal, loop closures



The Local Perceptual Map (LPM)

- Local SLAM in a bounded, fixed-sized map
 - The LPM scrolls keeping the agent near center.
 - Incremental update has O(1) complexity.
 - The local map includes no "large loops".
- The LPM is useful for:
 - Planning safe and comfortable local motion
 - Avoiding collisions with static and dynamic obstacles
 - Analyzing qualitative local decision structure in a place neighborhood.

Exploration and Navigation



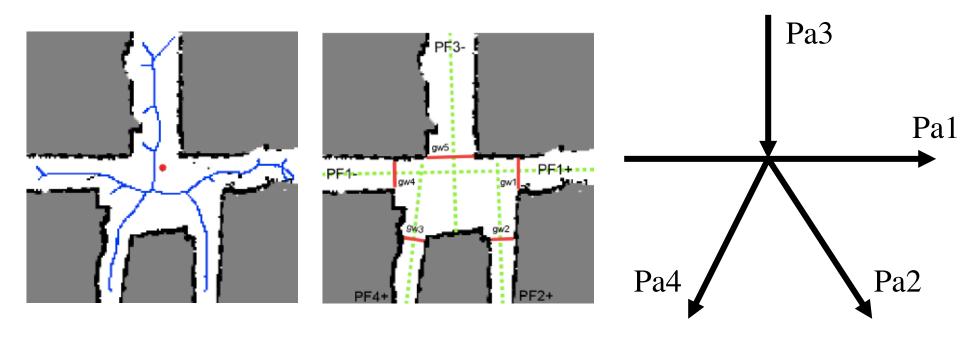
Identify the Local Topology

- Identify the local decision structure of each place neighborhood.
 - Travel experience as graph exploration

	Metrical Mapping	Topological Mapping
Small-scale space	Local SLAM —	Local decision structure
Large-scale space		

Local Decision Structure

- Identify gateways and path fragments
 - -2 gateways & 1 path fragment \Rightarrow on a path
 - Otherwise ⇒ at a place neighborhood



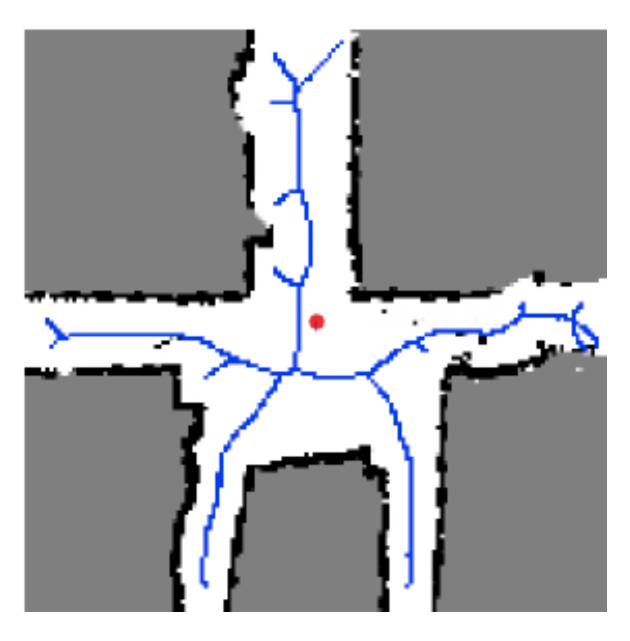
in small-scale space

in large-scale space

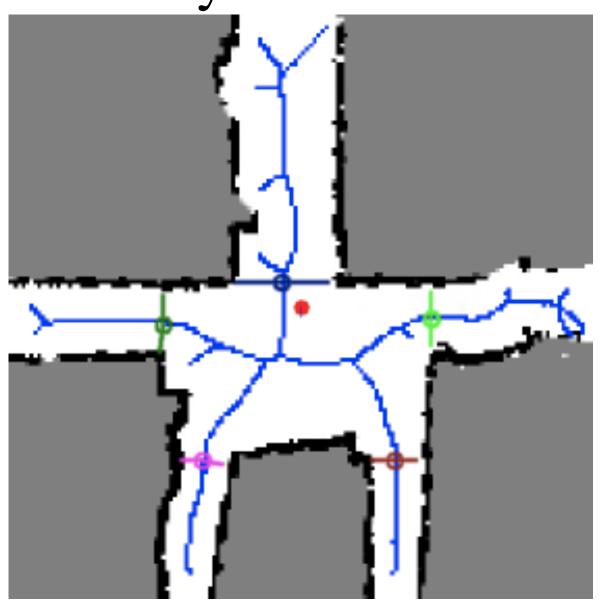
Gateways

- A gateway is a transition between a *travel* action and a place neighborhood
 - i.e., between a trajectory-following control law and a local perceptual map.
 - Transitions can be *inbound* or *outbound*.
 - Gateways are detected from local properties of the environment and the conditions on the control law.

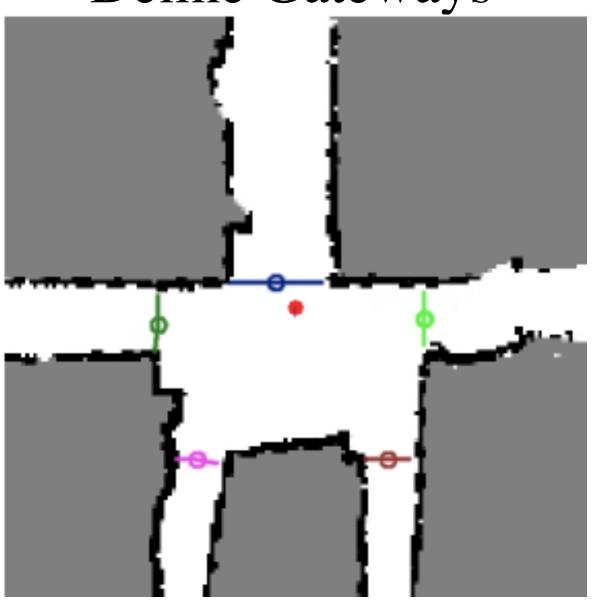
Detect and Describe a Place



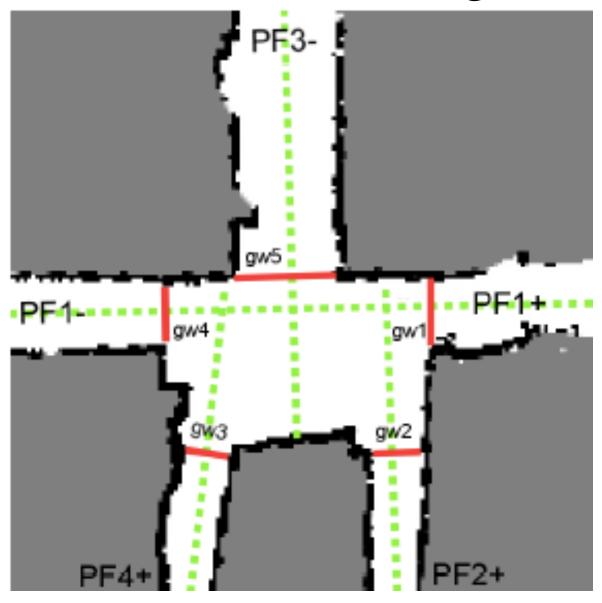
Identify Constrictions



Define Gateways



Define Local Path Fragments



Local Topology Description

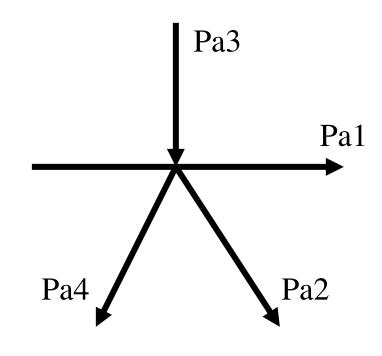
• The *small-scale star* is a circular order of path fragments, gateways, and control laws.

PF1+	(gw1,out) & (gw4,in)	Midline
PF2+	(gw2,out)	Midline
PF3+	(gw5,in)	DeadEnd
PF4+	(gw3,out)	Midline
PF1-	(gw4,out) & (gw1,in)	Midline
PF4-	(gw3,in)	DeadEnd
PF3-	(gw5,out)	Midline
PF2-	(gw2,in)	DeadEnd

Local Topology Description

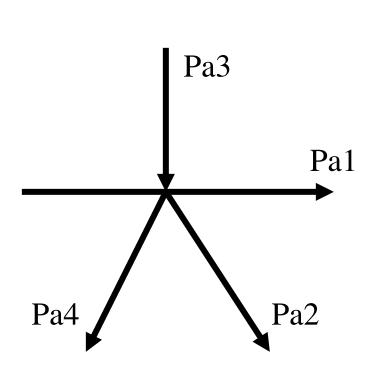
• The *large-scale star* describes the place with distinctive states and directed paths.

ds1	Pa1,+	
ds2	Pa2, +	
ds3	Pa3,+	Endpoint
ds4	Pa4,+	
ds5	Pa1,-	
ds6	Pa4, -	Endpoint
ds7	Pa3, -	
ds8	Pa2, -	Endpoint

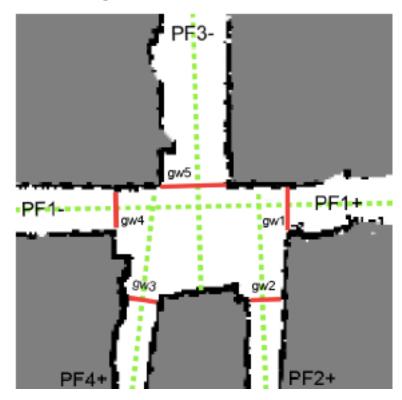


Decision Structure Abstraction

• A Turn action follows a trajectory through the local place neighborhood.



in large-scale space



in small-scale space

Does a place abstraction always exist?

- Not in truly pathological environments
 - open ocean (but what about the Puluwat navigators?)
 - or with pathological sensors
 - video snow

- Conjecture: Yes, with sufficiently rich sensors in a sufficiently rich environment.
 - office environments
 - campus/urban indoor/outdoor environments

Build the Global Topological Map

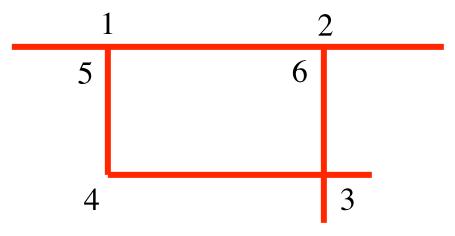
- Decide when and how loops are closed
 - When does the next place match a previous place?
- Build a tree of all possible topologies

	Metrical Mapping	Topological Mapping
Small-scale space	Local SLAM	Local decision structure
Large-scale space		Global topological map

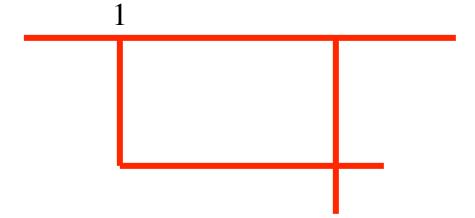
Build the Global Topological Map

- Define a tree of *all possible* topological maps consistent with exploration experience.
 - They are the leaves of this tree.
- For each new action+observation
 - If the map predicts the observation, OK.
 - If it contradicts the observation, prune it.
 - Otherwise, *branch* on maps with new edges:
 - All possible loop-closing hypotheses
 - One hypothesis of a brand-new place
 - Identify the current best map.

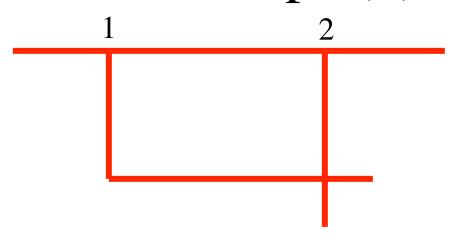
Building the Tree of Maps

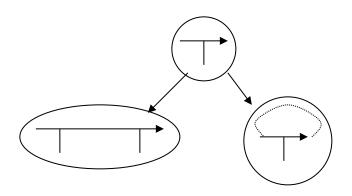


Tree of Maps (1)

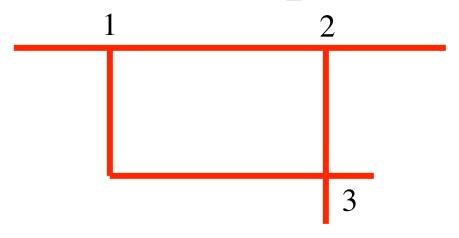


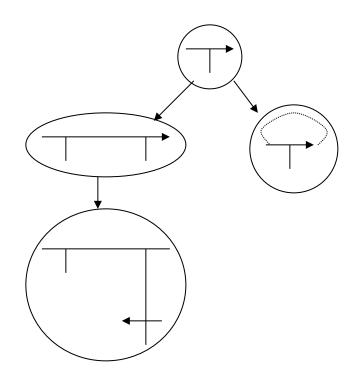
Tree of Maps (2)



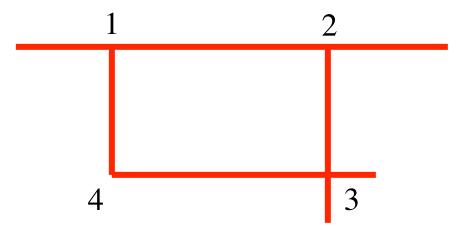


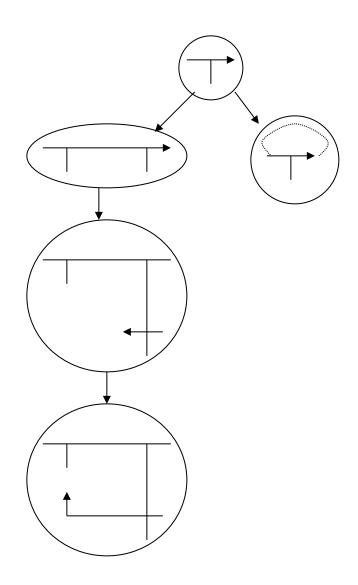
Tree of Maps (3)





Tree of Maps (4)





Tree of Maps (5) 3

Tree of Maps (6) 3

Rank the Consistent Maps

- The tree is **guaranteed** to contain the true map
 - All consistent maps are created.
 - Only inconsistent ones are deleted.
- Each map is a distinct loop-closing hypothesis.
 - Rank the consistent maps by simplicity (# places)
 - and/or likelihood, $p(odometry \mid layout)$.
- Use the current best map for planning.
 - Remember the tree.
 - The current best map could be refuted.

Plausible maps may be wrong

• Especially in Boston!

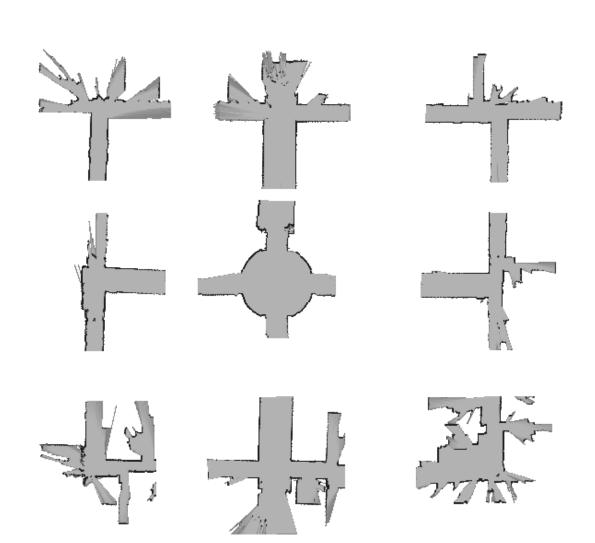
Global Metrical Map

- Use the topological map as a skeleton.
 - Lay out places in a single global frame of reference.
 - Fill in the details from local places and segments.

	Metrical Mapping	Topological Mapping
Small-scale space	Local SLAM _	Local decision structure
Large-scale space	Global metrical map	Global topological map

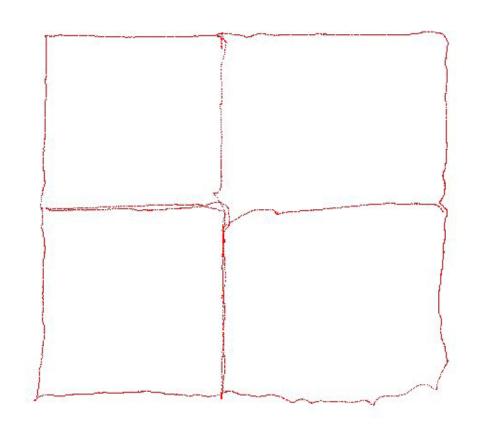
Estimating Place Layout

- Local displacements propagate to global place layout.
 - Loop-closings are especially helpful.
- Relaxation converges quickly to a maximum likelihood layout.



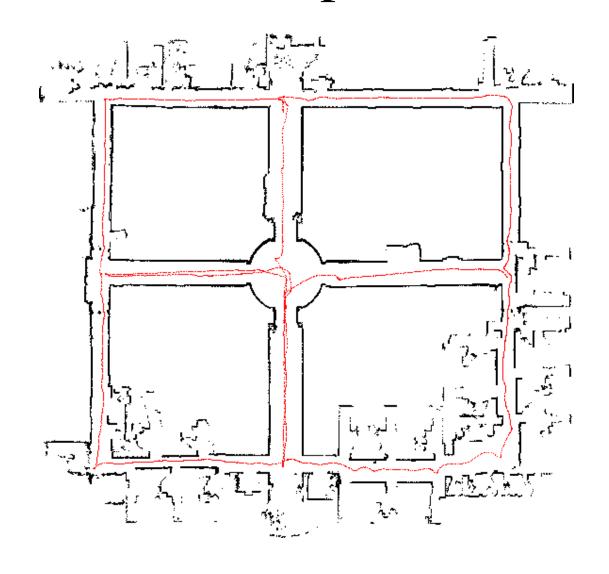
Estimating Robot Poses

- Given a max likelihood place layout
- and the trajectory of robot poses
- define a fixed anchor pose each time the trajectory passes through a place neighborhood
- correct the odometry in each segment.



Global SLAM with new poses

- Use the corrected odometry to do SLAM in the global frame of reference.
- Or just treat the odometry as correct, and build the map.

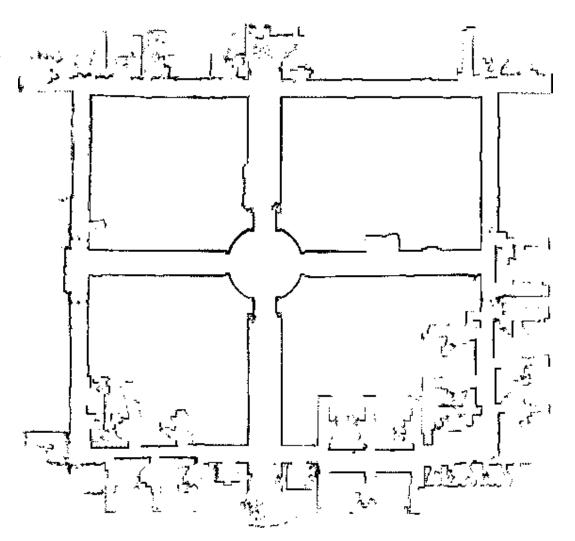


The Global Metrical Map

• The result is an accurate map in the global frame of reference.

• Cumulative error is eliminated by the topological map.

 More experience can be added locally to reduce any remaining errors.



What have we got?

- Four representations for navigable space
 - Agent can learn them, or be told

	Metrical Mapping	Topological Mapping
Small-scale space	Local map forsafe motion	Well separated decision points
Large-scale space	Heuristics to guide planning	Scalable map for route planning

Three-Tier Behavior Architecture

- Deliberative planning:
 - Global topological map defines the search space for route planning.
 - Global metrical map provides search heuristics.
- Task sequencing:
 - Local decision structure determines transitions between travel and turn actions
- Continuous control:
 - Local perceptual map provides world model for safe local motion planning.

Human-Robot Interaction

• Different kinds of human instructions map to different spatial knowledge representations

	Metrical Mapping	Topological Mapping
Small-scale space	"Go there" "To my desk"	"Turn right" "Second left"
Large-scale space	Select map point	"To the kitchen" "Doctor's office"

Controlling the Robot Wheelchair

Play from QuickTime Player

Lessons Learned

- Multiple representations are unavoidable
 - "Semantic Hierarchy" of representations
 - Large-scale and Small-scale space
 - Metrical and Topological representations
 - and others
- Multiple representations are useful
 - Reasoning can be more flexible and robust
 - Allow different kinds of sensors to contribute
 - Allow different kinds of human communication
- The human cognitive map provides guidance

References

- Park & Kuipers. Feedback motion planning via non-holonomic RRT* for mobile robots. IROS, 2015.
- Park, Johnson & Kuipers. Robot navigation with model predictive equilibrium point control. IROS, 2012.
- Beeson, Modayil & Kuipers, Factoring the mapping problem: Mobile robot map-building in the Hybrid Spatial Semantic Hierarchy. IJRR, 2010.
- Kuipers, An intellectual history of the Spatial Semantic Hierarchy. In Jefferies & Yeap (edited volume), Springer, 2008
- Remolina & Kuipers, Towards a general theory of topological maps. AIJ, 2004.
- Kuipers, The Spatial Semantic Hierarchy. AIJ, 2000.
- http://eecs.umich.edu/~kuipers/research/ssh/papers.html