Imperial College London

Logic-based and Probabilistic Symbolic Learning Lecture 2: Meta-Interpretive Learning

> Stephen Muggleton Department of Computing Imperial College, London

Paper for this lecture

Paper2: S.H. Muggleton, D. Lin, and A. Tamaddoni-Nezhad. Meta-interpretive learning of higher-order dyadic datalog: Predicate invention revisited. Machine Learning, 2015.

Available from http://www.doc.ic.ac.uk/ shm/mypubs.html

Motivation - revisited

Logic Program [Kowalski, 1980]

Inductive Logic Programming [Muggleton, 1991]

Machine Learn arbitrary programs

State-of-the-art ILP systems lack Predicate Invention and Recursion [Muggleton et al, 2011]

Family relations (Dyadic)

Target Theory

 $father(ted, bob) \leftarrow$ $father(ted, jane) \leftarrow$ $parent(X, Y) \leftarrow mother(X, Y)$ $parent(X, Y) \leftarrow father(X, Y)$ $ancestor(X, Y) \leftarrow parent(X, Y)$ $ancestor(X, Y) \leftarrow parent(X, Z),$ ancestor(Z, Y)

Meta-interpreter

Generalised meta-interpreter

prove([], Prog, Prog).

prove([Atom|As], Prog1, Prog2): -

metarule(Name, MetaSub, (Atom :- Body), Order),

Order,

 $save_subst(metasub(Name, MetaSub), Prog1, Prog3),$

prove(Body, Prog3, Prog4),

prove(As, Prog4, Prog2).

Metarules

Name	Meta-Rule	Order
Instance	$P(X,Y) \leftarrow$	True
Base	$P(x,y) \leftarrow Q(x,y)$	$P \succ Q$
Chain	$P(x,y) \leftarrow Q(x,z), R(z,y)$	$P \succ Q, P \succ R$
TailRec	$P(x,y) \leftarrow Q(x,z), P(z,y)$	$P \succ Q,$
		$x \succ z \succ y$

Meta-Interpretive Learning (MIL)

First-order	Meta-form
Examples	Examples
ancestor(jake,bob) ←	prove([ancestor(jake,bob),
ancestor(alice,jane) ←	ancestor(alice,jane)],) \leftarrow
Background Knowledge	Background Knowledge
father(jake,alice) ←	instance(father,jake,john) ←
mother(alice,ted) \leftarrow	instance(mother,alice,ted) \leftarrow
Instantiated Hypothesis	Abduced facts
father(ted,bob) ←	instance(father,ted,bob) \leftarrow
father(ted,jane) ←	instance(father,ted,jane) ←
$p1(X,Y) \leftarrow father(X,Y)$	base(p1,father) ←
$p1(X,Y) \leftarrow mother(X,Y)$	base(p1,mother) ←
ancestor(X,Y) \leftarrow p1(X,Y)	base(ancestor,p1) ←
ancestor(X,Y) \leftarrow p1(X,Z), ancestor(Z,Y)	tailrec(ancestor,p1,ancestor) \leftarrow

Logical form of Meta-rules

General form

 $\begin{array}{rcl} P(x,y) & \leftarrow & Q(x,y) \\ P(x,y) & \leftarrow & Q(x,z), R(z,y) \end{array}$

Meta-rule general form is

 $\exists P, Q, ... \forall x, y, ... P(x, ...) \leftarrow Q(y, ...), ...$

Supports predicate/object invention and recursion.

In Family Relations we consider datalog logic programs in H_2^2 , which contain predicates with arity at most 2 and has at most 2 atoms in the body.

Expressivity of H_2^2

Given an infinite signature H_2^2 has Universal Turing Machine expressivity [Tarnlund, 1977].

utm(S,S)	\leftarrow	halt(S).
utm(S,T)	~~~	execute(S,S1), utm(S1,T).
execute(S,T)	\leftarrow	instruction(S,F), F(S,T).

Q: How can we limit H_2^2 to avoid the halting problem?

$\mathbf{Metagol}_{D}$ implementation

- Ordered Herbrand Base [Knuth and Bendix, 1970; Yahya, Fernandez and Minker, 1994] - guarantees termination of derivations. Lexicographic + interval.
- Episodes sequence of related learned concepts.
- 0, 1, 2, ... clause hypothesis classes tested progressively.
- Log-bounding (PAC result) log_2n clause definition needs n examples.
- YAP implementation http://ilp.doc.ic.ac.uk/metagoID/

Examples of a) stable wall, b) column and c) non-stable wall.

buildWall(X,Y) \leftarrow a2(X,Y), f1(Y) buildWall(X,Y) \leftarrow a2(X,Z), buildWall(Z,Y) a2(X,Y) \leftarrow a1(X,Y), f1(Y) a1(X,Y) \leftarrow fetch(X,Z), putOnTopOf(Z,Y) f1(X) \leftarrow offset(X), continuous(X)

Stable wall strategy built from positive and negative examples. a1, a2 and f1 invented. Dyadic **Actions**, Monadic Fluents.

a) Predictive accuracy

b) Learning time

NELL experiment

- CMU's Never Ending Language Learning (NELL), [Carlson et al 2010].
- 50 million facts (triples) from web pages since 2010.

playssport(eva_longoria,baseball) playssport(pudge_rodriguez,baseball) athletehomestadium(chris_pronger,honda_center) athletehomestadium(peter_forsberg,wachovia_center) athletealsoknownas(cleveland_browns,buffalo_bills) athletealsoknownas(buffalo_bills,cleveland_browns)

$Metagol_D$ hypothesis

 $athletehomestadium(X,Y) \leftarrow athleteplaysforteam(X,Z),$ teamhomestadium(Z,Y)

Abduced facts

- 1. athleteplaysforteam(john_salmons,los_angeles_lakers)
- 2. athleteplaysforteam(trevor_ariza,los_angeles_lakers)
- 3. athleteplaysforteam(shareef_abdur_rahim,los_angeles_lakers)
- 4. athleteplaysforteam(armando_marsans,cincinnati)
- 5. teamhomestadium(carolina_hurricanes,rbc_center)
- 6. teamhomestadium(anaheim_angels,angel_stadium_of_anaheim)

Abductive hypotheses 2,4,5 and 6 were confirmed using internet search queries. However, 1 and 3 are wrong.

Learning higher-order concepts

Higher-order MetaRule

 $P(X,Y) \leftarrow symmetric(P), P(Y,X)$

Abduced facts

symmetric(athletealsoknownas) -

athletealsoknownas(buffalo_bills,broncos) -

athletealsoknownas(buffalo_bills,kansas_city_chiefs) ←

 $athletealsoknownas(buffalo_bills, cleveland_browns) \leftarrow$

Related work

Predicate Invention. Early ILP [Muggleton and Buntine, 1988; Rouveirol and Puget, 1989; Stahl 1992]

Abductive Predicate Invention. Propositional Meta-level abduction [Inoue et al., 2010]

Meta-Interpretive Learning. Learning regular and context-free grammars [Muggleton et al, 2013]

Higher-order Logic Learning. Without background knowledge [Feng and Muggleton, 1992; Lloyd 2003]

Higher-order Datalog. HO-Progol learning [Pahlavi and Muggleton, 2012]

Summary and limitations

Summary

- New form of Declarative Machine Learning [De Raedt, 2012]
- H_2^2 is tractable and Turing-complete fragment of High-order Logic
- Knuth-Bendix style ordering guarantees termination of queries
- Beyond classification learning strategy learning

Limitations

- Generalise beyond Dyadic logic
- Deal with classification noise
- Probabilistic Meta-Interpretive Learning
- Active learning