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% |Research Group

= M-HUG: Multimedia & Human Understanding Group
(http://mhug.disi.unitn.it/)
= 12 PhD students: China, Romania, Belarus, Iran, Brazil, US, Italy
= 8 PostDocs: China, Romania, Serbia, Spain, Italy, Iran
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&P State of the art?

iu_ﬁ Good boy. \
Hey, is that Not just any robot. THIS is We trained a 9-layered locally connected sparse
a robut? the current state-of-the-art autoencoder with pooling and local contrast
|n artificial intelligence. normalization on a dataset of 10 million images.

It was trained for 3 days
\ on a cluster of 1000
machines comprising
Q @ 16,000 cores.
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State of the art?

It can now recognize 22,000 different
object categories with 15.8% accuracy.

16.8%7 Impressive,
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Impressive? Didn't you AI guys program a

machine that defeated a world chess champion —

way back in 19977

And didn’t you AI guys build a computer
system that kicked the respective asses of the
two best Jeopardy! champions of all time?
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&P State of the art?

You call this

What happened to '"HAL 9000 by 2001'?
progress?!!

Where are our Series 800 Terminator robots?

Sorry we annoyed you
with our awesomeness. [: H T
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How to attain better multimedia
content understanding?



%P| Feature Selection

QUESTION 1.:

Is it possible to get a compact feature
representation? Would the accuracy be improved
as a result?



31 Semi-supervised Learning

. paucity of precise
labels

QUESTION 2:

Is there any way to attain a reasonable
performance when only few labeled images and
videos are available?



%’ Multimodal Analysis
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QUESTION 3:

Can we use other modalities (e.g., text) to
Improve the analysis? Can visual information
help text retrieval?



&P| Classifier-specific Representation

QUESTION 4:

Can we skip the explicit concept detection
process but learn an intermediate representation
using the available multimedia archives related
to various concepts for complicated events?



%’| Knowledge Adaptation
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QUESTION 5:

How can we guarantee reasonable multimedia
event detection accuracy when only few positive
exemplars are provided?



Multimedia Data

V A Generic Framework
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Things and Stuff:

A Computer Vision Perspective

Some slides courtesy of Heitz & Koller, Uijlings et. al



&P |Things vs. Stuff

Thing: An object with a
specific size and shape

Stuff: Material defined by a
homogeneous or repetitive
pattern of fine-scale properties,
but has no specific or distinctive
spatial extent or shape




FiInding Things

Context Is key!



%P | Context

a city and its trams
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D. Gatica-Perez



%P | Context




?} Context

Horse\‘ Human m

Riding Horse or Feeding Horse?

Disambiguation using relative locations of detected boxes



Context

Riding Horse or Feeding Horse?



Context




V Outline

= Sliding Window

m Selective Search vs. Sliding Window
s What is Context?

= The Things and Stuff (TAS) model

= Results



? Scenes, Objects, and Parts

Scene

Objects

Parts

|

Features

E. Sudderth, A. Torralba, W. Freeman, A. Willsky. ICCV 2005.



'3’ The statistical viewpoint

p(zebra|image)

p(no zebré\image)

» Bayes rule:

p(zebrajimage) _  p(image|zebra)  p(zebra)
p(no zebra|image) p(image|no zebra) p(no zebra)
\ —~ / o ~ _/ N J

posterior ratio likelihood ratio prior ratio



lé’ The statistical viewpoint

p(zebrajimage) _  p(image|zebra)  p(zebra)
p(no zebra|image) p(image|no zebra) p(no zebra)
\ / \— AN J
YT YT Y
posterior ratio likelihood ratio prior ratio

* Discriminative methods model posterior

« Generative methods model likelihood and
prior



Discriminative

p(zebra|image)
p(no zebra|image)

* Direct modeling of

Decision _ @  Zebra
boundary \/

Non-zebra




Generative

« Model p(image|zebra) and p(image|no zebra)

S o .. 4

p(image| zebra) | p(image|no zebra)

Low Middle

High Middle—>Low




l;’ Three main issues

= Representation
= How to represent an object category

= Learning
= How to form the classifier, given training data

= Recognition
= How the classifier is to be used on novel data



Object Detection

. = Task: Find the things
. = Example: Find all the

cars in this image

= Return a “bounding box”
for each

' = Evaluation:
= Maximize true positives
= Minimize false positives




Sliding Window Detection

= Consider every bounding box

= All shifts
: : = All scales
%5 = Possibly all rotations
o™ W . Each such window gets a score:
= D(W)

= Detections: Local peaks in D(W)
= Pros:

= Covers the entire image

= Flexible to allow variety of D(W)’s
= Cons:

= Brute force — can be slow
= Only considers features in box




Object-based Classification

Given an image/video collection:
Find the objects containing a specific object
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'5’ Object-based Classification

Problems:

- Viewpoint changes

- Location

- l[llumination conditions




'3’ Object-based Classification

Problems:
- Same functionality, different manifestations




'é’ Object-based Classification

= First intuition: First find the object, then recognize

segmentation Part-based model
(Fischler and Elschlager 1973)



%P Segmentation

= Segmentation traditionally aimed for unique
partitioning

But this never resulted in the necessary accuracy for
subsequent recognition



%P| Part-based Classification

No segmentation. Collection of spatially related local image details

Fergus, Perona, Zisserman, 2003



% Bag-of-Words

= No segmentation

= No location

THFEEYESNE ESE
FE=EFEFEREE=EACES
HE-EEEFE-E S
HAE"E BT E=a.
HEEESSEE™ " E=Ew.y
EEFET T EEEEER
— 3 B4 11 J 0 0 8 §
ENESNSEEEE SN
FEETETCEEE e
T EEEEESEEE™.

Sivic et al. 2003, Csurka et al. 2004



Bag-of-Words




Bag-of-Words
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Bag-of-Words
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%P| Bag-of-Words

Descriptor Space
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%P| Bag-of-Words

Descriptor Space
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%P| Bag-of-Words

Descriptor Space
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%P Bag-of-Words

Descriptor Space




%P Bag-of-Words

Descriptor Space

Add SIFT descriptors from many training images



%P Bag-of-Words

Descriptor Space

Clustering



%P Bag-of-Words

Descriptor Space

The clusters partition the descriptor space. Each cluster is called a “Visual Word”



®P| Bag-of-Words Descriptor Space
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%P| Bag-of-Words

Descriptor Space
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%P Bag-of-Words

Descriptor Space
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Global Representation




Bag-of-Words

I Classification
- - (SVM)



%P | Bag-of-Words details

= Extreme dense sampling at every pixel
= Local patches of 16 by 16 pixels
s SIFT, Opponent SIFT, and RGB-SIFT

= Visual Vocabulary using Random Forests, 4 binary
trees of depth 10 = 4096 visual words

= SVM with Histogram Intersection kernel



Ranked Images: Aeroplane

= Class images:
Highest ranked

= Class images:
Lowest ranked

= Non-class images:
Highest ranked

= Context?




Ranked Images: Bicycle

* Class images:
Highest ranked

= Class images:
Lowest ranked

e Ili._lll'llllll.l.

= Non-class images:
Highest ranked

= “Texture’?




Ranked Images: Cat

* Class images:
Highest ranked

* Class images: =i '._:'—'
Lowest ranked ¥ ._-"-.'.'.-.”-'.'.

= Non-class images:
Highest ranked

= “Composition”?




Conclusions Bag-of-Words

= Works well enough for retrieval purposes
= No segmentation
= No object location



Conclusions Bag-of-Words

= Works well enough for retrieval purposes
= No segmentation
= No object location

= \What do we lose by ignoring object location?

= Which parts of the image are important for
recognition?



%P |The Visual Extent of an Object

= What do we lose by ignoring object location”?

= Which parts of the image are important for
recognition?

Uijlings, Smeulders, Scha, IJCV 2012



‘3’ How BoW classifies images
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How BoW classifies images
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v How BoW classifies images




v How BoW classifies images




v How BoW classifies images




'5’ How BoW classifies images

= Bag-of-Words works really on local details,
although details are slightly larger than
patches

= Bag-of-Words uses details from both the
object and its surroundings

= Individual details are not very object or
surrounding specific

Uijlings, Smeulders, Scha, IJCV 2012



v Importance of Object Localization
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Importance of Object Localization




Importance of Object Localization
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Importance of Object Localization
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';’ Importance of Object Localization

= Global Bag-of-Words: 0.54 MAP

= Object Only: 0.68 MAP
A
- S, \
Average Precision: @ H
® , —m, |
S, DN
AP N R

0.3 0.4 0.5 0.6 0.7 0.8 0.9
recall



'5’ Importance of Object Localization

= Knowing the object location increases performance
by 26%, from 0.54 to 0.68 MAP

= When object location is known, the surround adds
very little information

Uijlings, Smeulders, Scha, IJCV 2012



'5’ Importance of Object Localization

= Knowing the object location increases performance
by 26%, from 0.54 to 0.68 MAP

= When object location is known, the surround adds
very little information

= Need to incorporate the notion of object location



'5' Outline

= Selective Search vs. Sliding Window



v Localisation: Exhaustive Search

= 100,000-1,000,000 locations. Imposes huge
computational constraints on subsequent
methods



% |Localisation: Segmentation

= 10-100 locations but captures few objects



% |Localisation: Segmentation

= Sliding window: 100,000-1,000,000 locations. Imposes
huge computational constraints on subsequent methods

= Segmentation: 10-100 locations, but captures few objects



lé. Segmentation as Selective Search

= Rethink segmentation:
= High Recall

= Coarse locations are sufficient (boxes)

= Fast to compute



? Segmentation as Selective Search

= An image Is intrinsically hierarchical. A
segmentation at a single scale cannot find all
objects




v

Segmentation as Selective Search

= Use all locations from a hierarchical grouping

Oversegmentation Hierarchical grouping Object hypotheses from
(Felzenszwalb 2004) of segments all hierarchy levels



V Segmentation as Selective Search

Color cues work best Texture cues work, color fails

= NoO single segmentation strategy works
everywhere

= We need a set of complementary segmentation
strategies



lé’ Segmentation as Selective Search

= Hierarchical Grouping

= Use of a variety of color spaces with
complementary invariance properties

= Different grouping criteria: Colour, Texture, Size,
Insideness

= 2 methods:
= Fast: uses 8 different hierarchical groupings

= Quality: uses 80 different hierarchical groupings

Van de Sande, et al, ICCV 2011



lé. Segmentation as Selective Search

Diversification
Version Strategies MABO | # windows | time (s)
Single HSV
Grouping | C+R+S+F 0.693 362 0.71
k =100
Structured | HSV, Lab
Sampling | C+T+S+F, T+S+F 0.799 2147 3.79
Fast k = 50,100
Structured | HSV, Lab, rgl, H, 1
Sampling | C+T+S+F T+S+E F, S | 0.878 10,108 17.15
Quality k = 50,100, 150,300

MAVO: Mean Average Best Overlap

rgl is normalized R and G and intensity. H is the Hue from HSV.

C = color, T = texture, S = Size, F = Fill/Insideness

k is the parameter for the initial oversegmentation. Higher k means fewer, larger initial regions



'5' Evaluation of Locations

= Pascal Overlap Criterion

Ground truth Bgr

Predicted B’U

= Correctly localised if best overlap > 50%

= Recall is the % of objects for which there is a
location with > 50% overlap



Evaluation of Locations

{}_95 . -. . + —_— .
0.9 =
0.85
0.8
ﬁ
8 0.75
o
0.7
— — —Harzallah et al.
0.65 — — —Vedaldi et al.
Alexe et al.
0.6 Carreira et al.
———— Endres et al.
0.55} —— S8 Fast
- — SS Quality
0-5 ! 1 1 1 |
2000 3000 4000 5000

Number of Object Boxes



Evaluation of Locations

=
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Mean Average Best Overlap

Alexe et al.
Carreira et al.
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——— 88 Fast
— S8 Quality
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Number of Object Boxes



Evaluation of Locations

method recall | MABO # windows
Arbelaez et al. [2] 0.752 | 0.649 418

Alexe et al. [1] 0.824 | 0.747 10,000
Harzallah er al. [14] 0.830 | - 200 per class
Carreira et al. [3] 0.879 | 0.770+0.084 | 517

Endres et al. [8] 0912 | 0.791+=0.082 | 790
Felzenszwalb et al. [10] | 0.933 | 0.82940.052 | 100,352 per class
Vedaldi et al. [29] 0.940 | - 10,000 per class
Single Grouping 0.840 | 0.690 289

SS “Fast” 0.980 | 0.804+0.046 | 2,134

SS “Quality” 0.991 | 0.879x=0.039 | 10,097




? Evaluation of Locations

= What does a .88 Best Overlap score mean?

Overlap 88.4% Overlap 87.9% Overlap 87.4%



Selective Search in Object Localisation

= Goal: ldentify and find the location of the
objects. An object is found if the Pascal
Overlap (MABO) score > 50%

Model False Positives Training Examples

SVM

(Histogram Intersection
Kernal)

I




Selective Search in Object Localisation

plane —
bike —
bird —
boat—
bottle —

chair —

table —
dog —
horse —
motor —
person —
plant —
sheep —

train |~

* UaCTTI
* ThisDaperI

Pascal VOC 2010

- Best results for 9 out of 20 object classes

- Works especially well on non-rigid object classes

- All competing methods are based on exhaustive search with HOG-features

Sande, et al. ICCV 2011



%P| Object Localisation
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= Quality of locations is close to optimal for this
Bag-of-Words system



'é’ Conclusions Selective Search

= Results in a small yet high quality set of
potential object locations

= Works by rethinking segmentation:
= Focus more on Recall than Precision

= Hierarchical grouping to deal with objects at multiple
scales

= Multiple complementary strategies to deal with high
variety in image conditions

= Enables use of more expensive features



Is Exact Localisation Optimal?




Is Exact Localisation Optimal?




Is Exact Localisation Optimal?

Parts were earlier used in “visual identification”
Learning to Locate Informative Features for Visual Identification, IJCV 2008,
A. Ferencz, E. Learned-Miller, J. Malik



Is Exact Localisation Optimal?

Parts may be more discriminative because of pose change,
often caused by interaction between the objects



Is Exact Localisation Optimal?

For occluded objects only the non-occluded part is informative.



Is Exact Localisation Optimal?

In crowded scenes, compared to an individual object:
a collection is both more easy to find and may be more discriminative



lé’ Is Exact Localisation Optimal: NO

= Parts may be more discriminative for some
classes

= Interacting objects may change pose,
retaining typical appearance only for object
parts

= Occluded objects are hard to find when
searching for complete objects

= In crowded scenes groups are more easy to
recognize

The Windows that Tell the Story of an Image, J.R.R. Uijlings and A.W.M. Smeulders



% |The Most Telling Window

= May focus on:
= Object Parts

= Complete Objects

= Object Collections

The Windows that Tell the Story of an Image, J.R.R. Uijlings and A.W.M. Smeulders.



? Methodology: Object Location

x Most Dominant:
Sliding Windows

A

= But yields 100.000 — 1.000.000 windows:
infeasible for powerful Bag-of-Words
Implementation

s Solution: Selective Search



‘5’ Methodology: Object Location

= Selective Search which uses multiple,
complementary, hierarchical segmentations



Methodology: Object Location

= Small set of class-independent locations
= Captures parts, objects, and collections

Example windows
generated by the
method:




'3’ Methodology: Framework

Normal Bag-of-Words Training
Use " Train SVM
Complete
: model
image
~ Descriptor ~ Visual Word /
Extraction | stz Classification

\ Use

Complete
image

Classification



Methodology: Framework

Training
Most Telling Window
Use

- ground truth
windows

Train SVM
model

Descriptor _ Visual Word
Extraction Assignment

Classification

~Classification




v Methodology: Framework

Training

Most Telling Window

Use _
ground truth Tr?rl]r; §e\|/|v|
windows

_ _ Extra Negatives
Descriptor ~ Visual Word -

Extraction Assignment

Classification

~Classification

Retraining: e.g. Laptev 2009, Felzenszwalb et al. 2010



? Localisation vs Most Telling Window

Localisation Most Telling Window

No negative examples from positive images!



l{;’ Localisation vs Most Telling Window

= Large difference in motivation:
= Parts i)

= Complete objects

= Collections of objects

= Subtle difference in training windows
= Significant difference in final results

= (Of course, it would be better to also obtain new
positive examples in retraining loop)



&P Implementation details

= Pixel-wise sampling
= (Colour) SIFT descriptors (Lowe04, Sande2010)
= K-means visual vocabulary

= Hard assignment. :
= Store “Visual Word Images” §§ Eé

= Spatial Pyramid (Lazebnik06). BoW:1x1,2x2,1x3.
MTW:2x2/4x4

= Bag-of-Words GPU acceleration (Sande2011)
= Selective Search

= Support Vector Machine with Histogram Intersection kernel.
Fast additive classification (Maji 2009)
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l3"Re3ults

bottle

Bag of Words - Global
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Interpolated Average Precision

Comparable with top scores reported in e.g. Chatfield et al. BMVC 2011

- We: Pixel-wise sampling, 5 Colour SIFT (Sande 2010), kmeans vocabulary 4096

- Chatfield et al.: dense sampling, grey-SIFT only, Fisher/Sparse coding



?‘Results

Ibottle R * Bag of Wards - Global

cow |- - * K Most Telling Window SP4
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U

Significant improvement by using not the whole image but its Most Telling Window
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esults

Bag of Words - Global
W Most Telling Window SP4
k. ‘ Our Localisation

¢ *

Most Telling Window consistently outperforms Exact Localisation (using same basic framework)
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?‘Results

Iboltle -
cow

Bag of Words - Global
Most Telling Window SP4
QOur Localisation
Pant-Based Localisation
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0 0.1 0.2 03 0.4 05 06 07 08 09 1

Interpolated Average Precision

Scores Detection Task: Felzenszwalb: 0.253 MTW: 0.317, Our localisation: 0.336,
Discrepancy in results on detection and classification suggests that exact localisation tends to
hallucinate objects that are not there while Most Telling Window finds object approximately.




¥ |Resuits

Ibame L * o “ T Bag of Words - Global
cow = ® 4 L W Most Telling Window SP4
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Interpolated Average Precision
Final combination by cross-validation using weighted addition of classifier output:
- 2 parts Most Telling Window SP 4x4 - 2 parts Localisation (Felzenszwalb 2010)
- 1 part Most Telling Window SP 2x2 - 1 part global Bag-of-Words

3 variations of global Bag-of-Words and our exact localisation were discarded. Location is crucial!



Visualising the Most Telling
Window of top-ranked images

Positives

High-ranked
Negatives

High-ranked ' l

Aeroplane



Visualising the Most Telling
Window of top-ranked images

High-ranked AN,
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Visualising the Most Telling
Window of top-ranked images

High-ranked
Positives

14

High-ranked ]
Negatives ; . %

Cat



Visualising the Most Telling
Window of top-ranked images

High-ranked H

Positives

High-ranked
Negatives

Cow



Visualising the Most Telling
Window of top-ranked images

High-ranked
Positives

High-ranked
Negatives

Motorcycle



Visualising the Most Telling
Window of top-ranked images

High-ranked
Positives

High-ranked » g l

Negatives

Person



lé’ Conclusions Most Telling Window

= The Most Telling Window is the window that is the most
discriminative for classifying the presence of an object: can
be (1) object part; (2) whole object; (3) object collection

= First time that window within the image yields better results
by itself than whole image?

= The Most Telling Window works better than exact
localisation

= Suboptimal positive windows suggest room for
Improvement

= Selective Search enables powerful, local Bag-of-Words
= Class independent parts, wholes, and collections



V Outline

= Sliding Window

m Selective Search vs. Sliding Window
= What is Context?

= The Things and Stuff (TAS) model

= Results



Satellite Detection Example

D(W)

0.8

0.8



v‘ Detections in Context

Task: Identify all cars in
the satellite image

|dea: The surrounding
context adds info to the
local window detector

Prior: Posterior:
Detector Only TAS Model



%P | Error Analysis

Typically...

True Positives are
IN CONTEXT

False Positives are

OUT OF CONTEXT

We need to look outside
the bounding box!




%P Types of Context

car “likely”

= Scene-Thing:

keyboard “unlikely”
[ Torralba et al., LNCS 2005 ]

[ Rabinovich et
al., ICCV 2007 ]

= Thing-Thing:



%P| Types of Context

= Stuff-Thing:

= Based on spatial
relationships

= Intuition:

“Cars drive on roads”

“Cows graze on grass” b
-~ "\-.»‘
_ Qi s % O P
“Boats sail on water”
Goal: Unsupe

-~

3 W ‘
r.;' = - L . . .‘I -



'5' Outline

= The Things and Stuff (TAS) model



Things

s Detection “candidates”
= Low detector threshold -> “over-detect”
= Each candidate has a detector score




%P Things

s Candidate detections
= Image Window W; + Score

= Boolean random variable T;
= Presence/absence of the target
class in the window |
= Thing model: conditional
prob. from window features
to prob. that window
contains the object

P(Ti’VV) —

Image

1
1+exp(a+ f-DW))




| Stuff

= Coherent image regions

= Segment image into regions: coarse
“superpixels”

= For each region extract color &
texture feature vector F; in R"

= Generative model: each region has
a hidden class label S; in {1...C}

= Stuff model
= Naive Bayes

P(S,.F,)=P(S,)P(F)s,)

Fj‘(Sj = S)~ N(g, Z,)




%P | Relationships

= Descriptive Relations

= “Near”, “Above”,
“In front of”, etc.

= Choose set R = {r,...r¢}
= Ry =1: Detection I and
region | have relation k
= Relationship model




'5’ The TAS Model

Image W.: Window
W T.:  Object Presence

S;: Region Label

F: Region Features

Ri: Relationship

Supervised
in Training Set




? Unrolled Model

Candidate
Windows * . . Regions



%P |Learning the Parameters

= Assume we know R
O Sj IS hidden

= Everything else observed
= Expectation-Maximization
= “Contextual clustering”

= Parameters are readily
Interpretable

Image
Window

Supervised
in Training Set




e

Clusters

Cluster #1
O(car,in) = 0.11
| . _

7

Cluster 5

V‘ Learned Satellit

¥
|

Cluster #2
O(car,in) = 2.66

Cluster #6

Of(car,in) = 2.35

O(car,in) = 0.04

P-

Cluster #3
Ofcar,in) = 0.79

Cluster #7

O(car,in) = 2.27

Cluster #4
Of(car,in) = 0.31

Cluster #8

O(car,in) = 3.90




%P |Which Relationships to Use?

= Rijk = spatial relationship
between candidate | and region |

Rij1 = candidate in region

How do we avoid overfitting?

RijK = candidate near region boundary



'é’ Inference

= So far, we assumed a known set of relationships

= But, different data may require different types of
contextual relationships == learn which one to use
= Define a large set C of “candidate relationships” (i.e., all
possible relationships to be included)

= Search through C for the subset of “active” relationships R
that best facilitates the use of context

= If a relationship is “inactive” => remove the edges from
all Tiand Sj to the Rijk variables for this particular k.

= With this view of “activating” relationships by including
the edges in the Bayesian Network, we can formulate our
search for R as a structure learning problem




&P Learning the Relationships

= Intuition
= “Detached” Ry, = Inactive
relationship
= Structural EM iterates:
= Learn parameters
= Decide which edge to toggle

= Evaluate with {(T|F,W,R)

= Requires inference
= Better results than using
standard E[{(T,S,F,W,R)]




&P |Learning the Relationships

Algorithm LearnTAS
Input:  Candidate relationships C, Dataset D = {(W [m], T'[m], F[m|, R[m])}
R «— 0 (all relationships “inactive”)
Repeat until convergence
Repeat until convergence (EM over Parameters)
E-step: Qm| — P(S |T,F,R;0r) Ym
M-step: fg «— argmaxEq [, ((S,T,F,R|W;0r)
Repeat until convergence (Greedy Structure Search)
Forall k, scorex =) _UT | F, R;0rgk) (score with k “activated”)
R—RGFK where k™ = argmax scorej.
Return Set R of “active” relationships, TAS parameters 65

-

Learning a TAS model. Here £ represents the log-likelihood of the data, and @
represents the set exclusive-or operation.



'é’ Inference

Image
Window

= Goal: find the probability that

each window contains the object

P(T|F.RW)=) P(T,S|F,RW)
S

= This expression involves a summation
over an exponential set of values for the S

vector of variables

= solve the inference problem approximately using a
Gibbs sampling MCMC method (Geman&Geman, 1987)



'5' Inference

Image
Window

= Block Gibbs Sampling

= Initial assignment to the variables

= In each Gibbs iteration resample all
of the S’s and then resample all the
T’s according to the following two

probabilities:
P(S;|T,F,R.W)x P(5;)P(F; | S;)| | P(Ri; | T:.5;)

P(T;| S.F.R.W) o P(T; | W) [[ P(Ri; | 1. S)).

J



V Outline

m Selective Search vs. Sliding Window
s What is Context?
= The Things and Stuff (TAS) model

= Results



% |Features: Edge fragments

Two boundary  Matching Jgon the edge image
fragments -

Opelt, Pinz, Zisserman, 5, N C’g? LS oo |
ECCV 2006 ) >

|

Csimilarities of matches>

1y |

g

3¢
1
rl ) T
Matching '5b0 the edge image 4

e i Z Q:_;I;\g for same centroi
% e - —

®
o) =

Weak detector = Matchof  '———r——r—— 1~ 1 1T = _
edge chain(s) from training || ] | } %
image to edgemap of test |

image

All matched boundary
fragments

BOOSTING! rgq I;

Segmentation / Detection  Backprojected Maximum




'3’ Base Detector - HOG

g HOG Detector: [ Dalal & Triggs, CVPR, 2006 ]
Feature Vector X SVM Classifier
‘Mar;i: N'\ _*. Active Class L
o ]
Hyper-plane
weighted weighted » Feature,

Input image

pos wts neg wits



? Results - Satellite

Prior: Posterior: Posterior:
Detector Only Region Labels Detections



Results - Satellite

0.8
~10% improvement in recall at 40 fppi

0.6

0.4

Recall Rate

- TAS Model
Base Detector

0.2

0 40 80 120 160
False Positives Per Image (fppi)



Base Detector Error Analysis

NN




Discovered Context - Bicycles

Bicycles
Cluster #3



T AT -

TAS Results — Bicycles

= Examples

= Discover “true positives”

= Remove “false positives”




Results — VOC 2005

Precision

Precision

0.4

0.2;

c
e,
82
Q
()
| -
o
—— TAS Model
Base Detectors -

------- INRIA-Dalal -

04}

Precision

0.2}

rm-u.cooo-o..o.oooo!-oooooooo.-.........
1 1 ]

0.1 0:2 | 0:3 | 0.4 0:1 0:2 0.J3 0:4 0.5
Recall Rate Recall Rate



Precision

deedoecdoec
..'

o
<
"pigigh

— TAS Model
Base Detectors
------- INRIA-Douze

Precision

0.1

0.2 0.3 0.4 0.5
Recall Rate

Results — VOC 2006

0.2 0.3
Recall Rate

0.4

0.5



?

Base AP TAS AP TAS AP Improvement

Object Class (Fixed R) (Learned R) (TAS - Base)
Cars 0.325 0.360 0.363 0.038
Motorbikes 0.341 0.390 0.373 0.032
People 0.346 0.346 0.337 -0.009
Bicycles 0.281 0.310 0.325 0.044
Cows 0.224 0.241 0.258 0.034
Sheep 0.206 0.233 0.248 0.042




Conclusions

s Detectors can benefit from context

= The TAS model captures
an important type of context

= Can improve any sliding window/selective
search detector using TAS

= The TAS model can be interpreted and
matches our intuitions

= We can learn which relationships to use



v Traditional Recognition Approach

Features are not learned

e e feature Learning
npu Ia 91 mm) |representation| EE) | Algorithm
(pixels) (hand-crafted) (e.g., SVM)

Image _ !_ow-level Object detection
vision features / classification

(edges, SIFT, HOG, etc.)



'3' Computer vision features

Normalized patch Spin image
T F] T
=] e |
ABRLUE
7T
R - - - -
= b T e | N %]
- 4 e
e | M At e 2 |
Ly e "
b W Y P g
Image gradients Keypoint descriptor

SIFT Spin image

Orientation Voting
b \—‘;i\é, “‘/ ;\'K’ B

ESNmBEE - - 0 -
A /£ - = ~ W | 7 -~

\ P \%Ove\r\lappmg Blocks o EENIRE

L 5 AN o — ™~ <

nputae i ik o 14 3 ) T~ T 7 - B
S , EEgDEE - -

Textons

HoG

and many others:

SURF, MSER, LBP, Color-SIFT, Color histogram, GLOH, .....



'5' Motivation

features?

Felzenszwalb, Girshick,
McAllester and Ramanan, PAMI 2007

Features are key to recent progress in recognition
Multitude of hand-designed features currently in use
Where next? Better classifiers? Building better

5 ¢

peITIn T i
R T T
;-'" -,

18 1aTE 7 deacnoer | e

EBNUS ™

O e
T

¥ Low level features: SIFT and its variants, LBP HDG.; :a [ | b 7l

+ Dense sampling and interest point detector; T L]
+ Represented as Bags of VWords; | S dmetr e

Yan & Huang
(Winner of PASCAL'10 classification competition)

Slide: R. Fergus



%P What Limits Current Performance?

* Replace each part with humans (Amazon Turk):

0.3

EParts | Parikh & Zitnick,
0.25 .%ﬁﬁﬂagal Models CVPR,1 O

0.2

0.15

0.1

Improvement in AP

0.05

I
1

-0.05

INRIA PASCAL

« Also removal of part deformations has small (<2%) effect.

— Are “Deformable Parts” necessary in the Deformable Parts Model?
Divvala, Hebert, Efros, ECCV 2012

Slide: R. Fergus



'5’ Mid-Level Representations

 Mid-level cues

— N\ || T T

Continuation Parallelism Junctions Corners

Tokens” from Vision by D.Marr: /":'7 \ = o ™M ‘
* Difficult to hand-engineer - What about learning them?
Slide: R. Fergus

* QObiject parts:




v

Learning Feature Hierarchy

* Learn hierarchy

« All the way from pixels - classifier

* One layer extracts features from output of previous layer

Image/Video
Pixels

 Train all layers jointly

Slide: R. Fergus



v Learning Feature Hierarchy

_earn useful higher-level features from images

Feature representation

s AN
oAbl Y| 3rdlayer

ol bl “Obj
- ‘.:!'ﬁ - : Objects

2nd layer
“Object parts”

1st layer
”EdgES”
Lee et al., ICML 2009;
CACM 2011 .
Pixels

®oT®
-

. Fill in representation gap in recognition



'3' Learning Feature Hierarchy

» Better performance

* Other domains (unclear how to hand engineer):
— Kinect L el
— Video
— Multi spectral

* Feature computation time

— Dozens of features now regularly used [e.g., MKL]
— Getting prohibitive for large datasets (10’s sec /image)

Slide: R. Fergus



®P| Approaches to Learning Features

e Supervised Learning

— End-to-end learning of deep architectures (e.g., deep
neural networks) with back-propagation

— Works well when the amounts of labels is large

— Structure of the model is important (e.g.
convolutional structure)

* Unsupervised Learning

— Learn statistical structure or dependencies of the data
from unlabeled data

— Layer-wise training
— Useful when the amount of labels is not large



v Convolutional Neural Networks

e LeCun et al. 1989

* Neural network with
specialized connectivity
structure

C3:f. maps 16@10x10
C1: feature maps S4:f. maps 16@5x5

INPUT 6@28x28
CS:layer Fg:jayer OUTPUT
a4 10

32x32

B@14xi14 120

Funcuml.ect'pgn | (Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Slide: R. Fergus



'3’ Convolutional Neural Networks

* Feed-forward: [ -
eature maps 1

— Convolve input

-

— Non-linearity (rectified linear)
— Pooling (local max) [ Pooling }

e Supervised

=

e Train convolutional filters by [ NI eIl }
back-propagating classification error ﬁ
Convolution
C3:f. maps 16@10x10 Lecun et al' 1998 [ (Learned) }
6@14x14 rl_r rl_rrm yer F: layer ouTPUT ﬁ
rll_ L p [ Input Image }

| Fullconrl,ection | Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Slide: R. Fergus



'3’ Components of Each Layer

Pixels /

Features

[Optional]

Filter with | ' '+ Non-linearity "
Dictionary -
(convolutional

or tiled)

Spatial/Feature v/
(Sum or Max)

Normalization
between
feature
responses

:> Output
Features

Slide: R. Fergus



v Filtering

Convolutional

— Dependencies are local
— Translation equivariance
— Tied filter weights (few params)
— Stride 1,2,... (faster, less mem.)

Feature Map
Slide: R. Fergus



lé' Non-Linearity

* Non-linearity
— Per-element (independent) ;.
— Tanh B

: 1/(1+exp(-x))
— Rectified linear
« Simplifies backprop
» Makes learning faster
« Avoids saturation issues

» Preferred option

Slide: R. Fergus



v Pooling

* Spatial Pooling

— Non-overlapping / overlapping regions
— Sum or max
— Boureau et al. ICML10 for theoretical analysis

Sum

Slide: R. Fergus



v Normalization

* Contrast normalization (across feature maps)

— Local mean =0, local std. = 1, “Local” = 7x7 Gaussian
— Equalizes the features maps

Feature Maps
Feature Maps After Contrast Normalization

Slide: R. Fergus



&P Krizhevsky et al. [NIPS 2012]

« Same model as LeCun’98 but:
- Bigger model (8 layers)

- More data

(106 vs 103 images)

- GPU implementation (50x speedup over CPU)

- Better regularization (DropOut)

-----

M

e 7 hidden layers, 650,000 neurons,

ax

pooling

.. e s
i Q‘ - —#
3 _j&' 1 ) H
------ ot 192 192 128 2048 204
27 128 g ] ]
13- 13
Eav i
arI: ! el :J:-' % o
= 13 Sy, * S N >
5 o 3 "‘ﬂ;;, dense dense
3
192 192 128 Max L]
; 2048
128 Max pooling ~ 2048
pooling

60,000,000 parameters

dense

1000



Multimedia Data

V A Generic Framework

EHr MW
REERIPRY
CHAE ACH
g2anEEr-Bal
e e A
ERcl-3: 2
PRRRAZER
T e FAE
EEN SEPE
P IRERGS
ETRI
BOSF2E S
EERTEA21..
da M Fa3E
RET RS

Gl R E
e | B e
NTERIFE:

il |

i -

Data

Auxiliary
Multimedia

feature | extraction




V Outline

= Feature Selection (Q1)

m Semi-supervised Feature Analysis (Q2)
= Visual Info Helps Text Retrieval (Q3)

m Classifier-specific Representation (Q4)
= Knowledge Adaptation for MED (Q5)



%P| Feature Selection

QUESTION 1.:

Is it possible to get a compact feature
representation? Would the accuracy be improved
as a result?



R Motivation

= Images are represented by various features

= Feature selection eliminates noise and
redundancy

= Feature selection can improve both
classification accuracy and computational
efficiency

= Web images are usually multi-labeled

Z. Ma, F. Nie, Y. Yang, J. Uijlings and N. Sebe: “Web Image Annotation via Subspace-
Sparsity Collaborated Feature Selection"”. IEEE Transactions on Multimedia, 14(4):

1021-1030, 2012.



%P Related Work

s Feature Selection

= traditional approach: individual evaluation of
features, e.g., Duda et al. [1]

« Problem: low efficiency, does not consider feature
correlation

= Sparse feature selection: joint evaluation, e.g.,
Yang et al. [2]

= Problem: does not consider concept correlation

[1] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification (2nd ed.). Wiley-
Interscience, New York, USA, 2001.

[2] Y. Yang, H. T. Shen, Z. Ma, Z. Huang, and X. Zhou. L21-norm regularized
discriminative feature selection for unsupervised learning. In 1JCAI, 2011.



%P Methodology

= Sparse model
= Shared subspace learning

Advantages:

= Batch-mode: evaluates features jointly across all data

points

= considers the correlation between different concept

labels



lg)' Formulation

s Feature Selection

= Joint feature selection with sparsity

= |,- norm regularized model [3]

mw;lfn loss(W) +v [|W[|,. ]/ Wiz, = ; \.fZi_] Wi

/ N

guarantees the optimized W to be sparse, i.e.,
some (many) of its rows shrink to zero. W can
be viewed as the combination coefficients for
the most discriminative features

loss function

[3] A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature learning. In NIPS, 2007



&P Formulation (Cont'd)

= Shared subspace learning [4]

training data  ground truth labels

— 7
min |OSS(W X, Y ) + IL@(V P) assumes multi-label images share

W.V,P,Q common attributes, e.g.,. an image
labeled “parade”, “people” and

S.t. Q Q — | W = \ﬁ‘l' QP “street” share “people” with another

J{) one labeled “party* and “people”
shared subspace weights

N Objective FunCtion: ‘/controls the complexity

nguI}'l]!‘Ih ‘ XTw— YHE Tt .;:-:|‘1.e1-*’||2!]<i;|W— QF |‘E

s. 1. QTQ = [ regulates the information to each specific label

[4] R. Ando, and T. Zhang. A framework for learning predictive structures from
multiple tasks and unlabeled data. JMLR, 2005.



i g Experiments

= Datasets:
= MSRA-MM 2.0: web images, diverse, multi-labeled
= NUS-WIDE: Flickr images, diverse, multi-labeled, large-

scale
| MSRAMM20 | NUS-WIDE _
Class Number 100 81
Training Set Size 10,000 10,000
Testing Set Size 32,266 199,347

= Features: Color Correlogram
Edge Direction Histogram
Wavelet Texture



%’ |Experiments (Cont'd)

= Comparison algorithms:
= Sub-Feature Uncovering with Sparsity (SFUS)
= All Features
= Fisher Score

= Sparse Multinomial Logistic Regression via Bayesian L1
Reqgularisation (SBMLR), NIPS

= Spectral feature selection (SPEC), ICML
= Group Lasso with Logistic Regression (GLRR), ACM MM

= Feature Selection via Joint 12,1 —Norms Minimization
(FSNM), NIPS



Experiments (Cont’d)

= Results comparison — 10c (class number) training data
MAP/MicroAUC/MacroAUC + Standard Deviation on MSRA dataset

All Features SBLMR SPEC FSNM GLRR SFUS

0.062+0.001 0.060+0.002 0.056+0.002 0.058+0.001  0.061+0.002  0.060+0.001 0.063+0.001

0.840+0.001 0.861+0.005 0.869+0.003 0.852+0.002  0.875+0.002  0.846+0.001 0.878+0.002

0.655+0.006 0.655+0.003 0.643+0.006 0.650+0.004  0.658+0.006  0.653+0.005 0.662+0.005

MAP/MicroAUC/MacroAUC + Standard Deviation on NUS dataset

0.081+0.002 0.080+0.002 0.072+0.008 0.078+0.002  0.092+0.001  0.082+0.002  0.094+0.003

0.842+0.003 0.851+0.003 0.871+0.005 0.847+0.003  0.869+0.002  0.853+0.002  0.877+0.002

0.726+0.003 0.728+0.004 0.718+0.028 0.722+0.003  0.753+0.002  0.732+0.003  0.756=+0.003



Experiments (Cont’d)

= Results comparison — 20c (class number) training data
MAP/MicroAUC/MacroAUC + Standard Deviation on MSRA dataset

0.067+0.004  0.066=0.002 0.059+0.001 0.066+0.001  0.068+0.001 0.067+0.001 0.070+0.001
0.859+0.011  0.876+0.004 0.883+0.004  0.868+0.001  0.888+0.002 0.866+0.002 0.888=+0.002
0.676+0.013  0.680+0.004 0.666+0.004  0.679+0.002 0.687+0.002 0.680+0.002 0.690=+0.002

MAP/MicroAUC/MacroAUC + Standard Deviation on NUS dataset

All Features SBLMR SPEC FSNM GLRR SFUS

0.099+0.001 0.098+0.004 0.073+0.007 0.094+0.001  0.105+0.003  0.105+0.002 0.108+0.002
0.874+0.001 0.880+0.005 0.887+0.006 0.875+0.001  0.888+0.003  0.885+0.003 0.891+0.003

0.767+0.001 0.770%0.005 0.733+0.024 0.763+0.001  0.785+0.004  0.780x0.001 0.789+0.003



%’ |[Experiments (Cont'd)

s Influence of selected features

a.07
0,108
0088 -
% (=1
'f
= -
0.1
D08z
0.099
D.OSE i L
100 150 200 250 300 AsFaaiures 100 150 200 250 300 AllEsabwes
Mumber of Selected Fetures Number of Selecied Fetures

(a) MSRA-MM (b) NUS-WIDE



?

= Convergence

Objective Function Value

34307

3420

3410

34007

33907

3380

3370

3360

\_

b

10 15
lteration Mumber

(a) MSRA-MM

20

Objective Function Value

2620

2580

2560

2540

Experiments (Cont’d)

L¥ i

2

& B 10
lteration Number

(b) NUS-WIDE

12



TP Summary

= Integration of shared subspace learning and joint
feature selection with sparsity

= Evaluating feature importance jointly
= Consideration of the correlation between labels
= Promising results on large-scale web image sets

Z. Ma, F. Nie, Y. Yang, J. Uijlings and N. Sebe: “Web Image Annotation via Subspace-
Sparsity Collaborated Feature Selection"”. IEEE Transactions on Multimedia, 14(4):
1021-1030, 2012.



V Outline

s Feature Selection (Q1)

= Semi-supervised Feature Analysis (Q2)
= Visual Info Helps Text Retrieval (Q3)

m Classifier-specific Representation (Q4)
= Knowledge Adaptation for MED (Q5)



31 Semi-supervised Learning

. paucity of precise
labels

QUESTION 2:

Is there any way to attain a reasonable
performance when only few labeled images and
videos are available?



R Motivation

= Multimedia data are represented by various
features

= For classification purpose, some noisy and
Irrelevant features may be not useful

= Semi-supervised learning uses the limited
available labels in an effective way

= It Is natural to integrate semi-supervised learning
with feature selection
Z. Ma, F. Nie, Y. Yang, J. Uijlings, N. Sebe and A. G. Hauptmann: “Discriminating Joint

Feature Analysis for Multimedia Content Understanding". IEEE Transactions on Multimedia,
14(6): 1662-1672, 2012.



lg Problems

= Semi-supervised feature selection

= traditional method: low efficiency, does not consider

feature correlation

= Sparse feature selection Supervised

learning

Requires fully
. labeled training
data

= is generally realized through




&P Methodology

= Efficient feature analysis

= Sparse feature selection

= Semi-supervised via graph Laplacian

Advantages:

= Batch-mode: evaluating features jointly across all
data points

= Semi-supervised: not so expensive as supervised
learning
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lé’ Formulation

= Feature Selection
= Joint feature selection with sparsity
- norm regularized model [3]

- I2,1

inloss(W) +y W
min loss(W) Y [[Wll2 4

= Incorporate semi-supervised learning
= Use graph Laplacian



%P Formulation

= Semi-supervised learning
= Graph Laplacian construction: L =D — A

D.. — Zn A A — 1 x; and x; are k nearest neighbors;
T Lag=1771 W1 0 otherwise.

= Objective function: use manifold regularization

arg min Tr (WTKLXTW) + Hr‘x?w+ Inb! — "ﬁHi + v [IWll2,5

labeled training data bias term ground-truth labels

= Define a predicted label matrix F for all training data
= smooth on Y,and the manifold structure
arg min T (FTLF) + Tr ((F=V) %{F—Y])

Ui = o0 if x5 is labeled and U;; = 1 otherwise



%P Formulation

= Objective Function: - ' loss function

argmlnTr(FTLF)+Tr ((F- Y) U(F-Y) +nyTW +1.b" - FH +y|W]l,,

F.W,b

SN N\

ground truth labels  decision matrix  training data
predicted labels sparse coefficients

= We are able to get F, W, and b simultaneously

= The optimal W obtained can be utilized directly for
classification as W does feature selection



&P Experiments

s Datasets

= Image annotation:
= Corel-5K: 50 classes, 5000 images
= MSRA-MM 2.0: 81 classes, 42266 images
=« NUS-WIDE: 100 classes, 209347 images

= Video concept recognition:
= Kodak: 22 concepts, 3590 video frames
=« CareMedia: 5 concepts, 3913 video sequences
=« 3D motion data analysis
« HumanEva: 10 classes, 10000 frames



%P | Experiments (Cont’d)

= Comparison algorithms:
» Structural Feature Selection with Sparsity (SFSS)
= Fisher Score (FISHER)

= Sparse Multinomial Logistic Regression via Bayesian L1
Regularisation (SBMLR), NIPS

= Group Lasso with Logistic Regression (GLRR), ACM MM

= Feature Selection via Joint 12,1 —Norms Minimization
(FSNM), NIPS

= Semi-supervised Feature Selection via Spectral Analysis
(sSelect), ICDM

= Locality sensitive semi-supervised feature selection
(LSDF), Nerocomputing
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%P | Experiments (Cont'd)

MAP

= Comparison on video concept recognition

0.35

1 0.3
0o
4L
=
0.25
—— GEES =@ EFS5
#— FISHER #— FISHER
ey - FShipd e FSMM
—aif— GlLIR —i— GLLA
—— L —— G BMLH
0.2 -
2510 25 50 100 1510 25 50 100
Percentage of labeled fraining data Perconiage of labaled training data

(a) Kodak (b) CareMedia



%P | Experiments (Cont'd)

= Comparison on 3D motion data analysis
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%P | Experiments (Cont'd)

= Comparison with semi-supervised algorithms
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'5’ Summary

= Harnessing discriminating features closely related to the
concept labels

= Cost saving
= Boosting performance with the usage of unlabeled data

= Analysis of multimedia data structure helps multimedia
content understanding

= Clear advantages when few training data are labeled
= Applicable to a variety of applications

Z. Ma, F. Nie, Y. Yang, J. Uijlings, N. Sebe and A. G. Hauptmann: “Discriminating Joint
Feature Analysis for Multimedia Content Understanding". IEEE Transactions on Multimedia,
14(6): 1662-1672, 2012.



V Outline

s Feature Selection (Q1)

m Semi-supervised Feature Analysis (Q2)
= Visual Info Helps Text Retrieval (Q3)

m Classifier-specific Representation (Q4)
= Knowledge Adaptation for MED (Q5)



%’ Multimodal Analysis
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QUESTION 3:

Can we use other modalities (e.g., text) to
Improve the analysis? Can visual information
help text retrieval?



% Motivation

= Text-analysis used for vision

[Barnard ICCV 2001]
oo i g s [Berg ECCV 2010]

Smith shpped quididy through the glass doors of Victory Manssons. At one end of
the haliway, a coloured poster had been tacked 10 the wall it depicied smply an
enormous face, more than & metre wide: the face of a man of about forty-five.
with a heavy black moustache and ruggedly handsome features. Winston made
for the stairs. It was no use trying the lift, the dlectric current was aut off during
daylght hours. The flat was seven fights up, and Winston, who was thirty-nine,
went dowly, resting several timas on the way. On each landing. opposite the kft-
shaft, the poster with the enormous face gazed from the wall It was one of those
pictures which are 30 contrived that the eyes follow you about when you move
BIG BROTHER IS WATCHING YOU, the caption beneath it ran

Insade the flat & fruity vosce was reading out a kst of figures. The instrument (the
telescreen, it was called) could be dimmned, but theve was no way of shutting it
off completely. The telescreen receved and transmitted simultanecusly. Any
sound that Winston made would be picked up by & moreover, 50 long as he
remained within the Seld of vision whach the metal pigue commanded, he could
be seen a3 well 23 heard. There was of course no way of knowing whether you
were being watched at any given moment. It was even conceivable that the
Thought Police watched everybody all the time. You had 10 ve in the
ASLMpton that every ound you made wat overheard, and, escept in darkness,
every moment scrutinized

E. Bruni, J. Uijlings, M. Baroni, N. Sebe, Distributional semantics with eyes: Using image
analysis to improve computational representations of word meaning. ACM Multimedia 2012



Motivation

« Text-analysis used for vision
« Multimodal analysis

It wai a bright cold day in Apeil and the docks weve striking thirteen. Winston
Smith sdipped quicidy through the glass doors of Victory Mansions. At one end of
the haliway, 3 coloured poster had been tacked 10 the wall It depicted smply an
enormous face, more than a metre wide: the face of a man of about forty-five
with a heavy black moustache and ruggedly handsome features. Winston made
for the stairs. It was nO use trying the it the electric current was (1 off during
daylght hours. The flat was seven fghts up, and Winston, who was tharty-nine.
went slowly, resting several times on the way. On each landing. opposite the ift-
shaft, the poster with the enormous face gazed from the wall It was one of those
pictures which are 30 contrived that the eyes follow you about when you move
BIG BROTHER IS WATCHING YOU, the caption beneath it ran.

Indide the flat & fruity voice was reading out a st of figures. The instrument (the
teleicreen, it was called) could be dimmed, but there was no way of shutting it
off completely. The telescreen receved and transmitted smultanecusly. Any
sound that Winston made would be picked up by . moreover, 0 long as he
remaned withen the feld of viuon whech the metal pague commanded. he could
be seen a3 well as heard. There was of course no way of knowing whether you
were beng watched 2t any given moment [t was even conceivable that the
Thought Police watched everybody all the time. You had 1o lve in the
AssUMpLon that every sound you Made was overheard, and, except in darkness,
every moment scrutinied




Motivation

« Text-analysis used for vision
= Multimodal analysis
= Vision-analysis used for text

It wai a bright cold day in Apeil and the docks weve striking thirteen. Winston
Smith sdipped quicidy through the glass doors of Victory Mansions. At one end of
the haliway, 3 coloured poster had been tacked 10 the wall It depicted smply an
enormous face, more than a metre wide: the face of a man of about forty-five
with a heavy black moustache and ruggedly handsome features. Winston made
for the stairs. It was nO use trying the it the electric current was (1 off during
daylght hours. The flat was seven fghts up, and Winston, who was tharty-nine.
went slowly, resting several times on the way. On each landing. opposite the ift-
shaft, the poster with the enormous face gazed from the wall It was one of those
pictures which are 30 contrived that the eyes follow you about when you move
BIG BROTHER IS WATCHING YOU, the caption beneath it ran.

Indide the flat & fruity voice was reading out a st of figures. The instrument (the
teleicreen, it was called) could be dimmed, but there was no way of shutting it
off completely. The telescreen receved and transmitted smultanecusly. Any
sound that Winston made would be picked up by . moreover, 0 long as he
remaned withen the feld of viuon whech the metal pague commanded. he could
be seen a3 well as heard. There was of course no way of knowing whether you -

were beng watched 2t any given moment [t was even conceivable that the thIS research
Thought Police watched everybody all the time. You had 1o lve in the

AssUMpLon that every sound you Made was overheard, and, except in darkness,

every moment scrutinied




®P| Distributional Semantics

« What is the semantic relatedness between
two words?
= Applications:
. Query expansion
. Textual advertising
. Information extraction
. Word sense disambiguation



'3’ Distributional Semantics

= Distributional Hypothesis:

Word-meaning can be derived from context
[Harris, Charles and Miller, Firth, Wittgenstein, ...]

He filled the wampimuk, passed it
around and we all drunk some

B

b d
bk

it ElEE
- i o N
P il -
x4 ! .

We found a little, hairy wampimuk
sleeping behind the tree

this research



'5' Distributional Semantics

« Distributional Hypothesis:
Word-meaning can be derived from context

[Harris, Charles and Miller, Firth, Wittgenstein, ...]

A

‘. - -
. -

\\\.\

Few people write that bananas are yellow



%’ | Research Questions

« Text vs Images: Which semantics are
captured?

= Do iImages improve upon text-only
semantics?

= How does the distributional hypothesis work
for images?
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Distributional semantics from text
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';’ Distributional semantics from images

Bag-of-Words
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? Distributional semantics from images
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lé.

Multimodal distributional semantics

= Concatenation

shadow | shine
moon 16 29
sun 15 45
dog 10 0




&P Semantics: text vs images

. BLESS dataset [Baroni 2011]
. 200 pivot words

. Human collected relata words in 8 categories

— Coordinate: alligator - lizard

— Hypernym (is-a): alligator - reptile

— Meronym (part): alligator - teeth

— Attribute: alligator - aquatic

- Event (verb): alligator - swim

- Random noun: alligator - trombone
- Random adjectives: alligator - electronic
- Random verbs: alligator — conclude

. average 7-33 relata per category per pivot
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'5’ Semantics
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Semantics: text vs images

concept fext Image
cabbage leafy white
carrot fresh orange
cherry ripe red
deer wild brown
dishwasher electric white
hat white  old
hatchet sharp  short
onion fresh white
oven electric new
plum juicy red
sparrow wild little
tanker heavy (Qrey



l{}’ Improving Distributional Semantics with Eyes

« Datasets with human semantic judgements

. WordSim (WS) [1]: 353 word pairs
. MEN [2] : 3000 word pairs

[1] http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/
[2] http://clic.cimec.unitn.it/~elia.bruni/MEN



? Improving Distributional Semantics with Eyes

Spearman correlations with human semantics:

Model MEN | WS
Text 0.68 0.70
Image 0.43 | 0.36
Linear 0.73 0.67
Smoothed | 0.76 | 0.75




." The illustrated distributional hypothesis

The meaning of a word can be derived from context

he curtains open and the moon shining in on the barely
ars and the cold , close moon " . And neither of the w
rough the night with the moon shining so brightly , it
made in the light of the moon . It all boils down , wr
surely under a crescent moon , thrilled by ice-white
sun , the seasons of the moon ? Home , alone , Jay pla
m is dazzling snow , the moon has risen full and cold
un and the temple of the moon , driving out of the hug
in the dark and now the moon rises , full and amber a
bird on the shape of the moon over the trees in front
But I could n’t see the moon or the stars , only the
rning , with a sliver of moon hanging among the stars
they love the sun , the moon and the stars . None of
the light of an enormous moon . The plash of flowing w
man ‘s first step on the moon ; various exhibits , aer
the inevitable piece of moon rock . Housing The Airsh
oud obscured part of the moon . The Allied guns behind



.;’ The illustrated distributional hypothesis

The meaning of a word can be derived from context
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? The illustrated distributional hypothesis

The meaning of a word can be derived from context

Pascal VOC 2007 (20 object classes, 5000 test images)

1) Ground truth object locations
2) Selective Search Localisation



.;’ The illustrated distributional hypothesis

Global Ground Truth  Selective

(baseline) Search
Object - 0.39 0.36
Surround - 0.50 0.51
Object+Surround 0.47 0.54 0.54
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8P Summary

« Image and text have complementary semantic
Information

= Image features improve text-based task

= Distributional hypothesis for images works mostly
on context



V Outline

s Feature Selection (Q1)

= Semi-supervised Feature Analysis (Q2)
= Visual Info Helps Text Retrieval (Q3)

= Classifier-specific Representation (Q4)
= Knowledge Adaptation for MED (Q5)



&P| Classifier-specific Representation

QUESTION 4:

Can we skip the explicit concept detection
process but learn an intermediate representation
using the available multimedia archives related
to various concepts for complicated events?



&P | Multimedia Event Detection

Detect the occurrence of an event within a
video clip based on an Event Kit, which
contains some text description and some
example videos

National Institute of Standards and Technology







v Annotation vs Detection




? Progress on Video Content Detection

= TREC Video Retrieval Evaluation (TRECVID)

Sports News

= “Event detection in Internet multimedia (MED)”
2010: more complicated events, e.q., Assembling
a shelter



Difficulty of MED

SERIRFFANRN RN NN RN RN
=3 1 i 5

-

o =

ll.llIl'lllllllllI__i-lII;‘I_Inll‘lI.IIII'IllllllI.IlI_IIIIllllrl-l-.lllI'IIIIIIIIII_IIII.III II_IIII'IlIIIIlIlI_IIIIlIII




RP| Inspiration

= Learning to refine multimedia representation

= Limit: the refinement and the classifier training are
Independent

= Concepts-based representation

= Limit: heavily dependent on concept detectors

= Avallable multimedia archives (concepts &

events)



lé’ Methodology

= Learn an intermediate representation of videos by
exploiting the target videos and external video
archives together

= Integrate representation inference and classifier
training into a joint framework

= Merits:
= The optimization of classifier is event based
= No need for pre-trained concept detectors

Z. Ma, Y. Yang, N. Sebe, K. Zheng, A. G. Hauptmann: “Multimedia Event Detection Using
a Classifier-Specific Intermediate Representation, IEEE Transactions on Multimedia,

15(7):1628-1637, 2013



®P| Traditional approach

regularizer
(s
min Z E(flxi), yi) + al2(f)
multimedia label indicating video X; is
event detector loss function positive/negative example

= Glven a standard concept-based representation

= Use m annotated external videos{zn+1,....Tn+m | from ¢
classes to pre-train c classifiers 9k |} (one for each
Intermediate concept, e.g., fish or boat for “landing a fish”)

= For each training or testing video z:(1 < © < n) the
classifiers gk |f_, are applied to detect the intermediate
concepts

= Problem: Q’k|i=1 and £ are trained independently



&P Formulation

= Joint learning of classifier and representation with
external videos

= exploit the shared components

= assume that external-based videos and concept-based videos
have a common intermediate representation

min | XOW — Y|, +a|W]|7,

WwW.e
/ S.f-.ElTE" =1 \ d c :ri
- - - A. — J'-Al_ﬁ' 1 Jé
- avoid arbitrary scaling 1412 5 Z [; [4i51)
- preserve information

=1

X € Rintm)xd . target & external videos
V= R|:r.!+?;-t];a[r.'—2]| . labels
(= . iIntermediate representation



&P Experiments

= Datasets
» Target videos: TRECVID MED 2011 (15 events)
= External videos: TRECVID MED 2011 development set
(3 events)

= External videos: TRECVID 2011 semantic indexing
task development set

= concepts with few positive examples are
removed

= 65 concepts related to human, environment and
objects

» Features: SIFT & CSIFT & MoSIFT



l;’ Events Visualization

Making a cake Batting a run Assembling a shelter



l;' Events Visualization

Landing a fish Wedding ceremony



l;' Events Visualization

Flash mob gathering

Getting a vehicle unstuck Grooming an animal



l;’ Events Visualization

Parkour Repairing an appliance



Experiments

= Comparison algorithms:

= Semantic Analysis via Intermediate Representation
(SAIR)

= AdaBoost

= TaylorBoost, CVPR

= SVM

= LDA

= Semantic Concept Representation (SCR), ECCV



%P |[Experiments

= MED performance comparison (MinNDC/AP)

, , 1.218 0.995 0.826 0.998 0.742 0.775
Attempting a board trick

0.086 0.094 0.225 0.131 0.274 0.248

, , 1.343 1.001 0.963 1.001 0.981 0.964
Feeding an animal

0.037 0.043 0.087 0.045 0.079 0.089

, _ 1.119 0.932 0.665 0.938 0.704 0.626

Landing a fish

0.065 0.097 0.260 0.103 0.234 0.281

, 1.015 1.001 0.466 1.001 0.582 0.441
Wedding ceremony

0.084 0.067 0.483 0.073 0.322 0.493

project 0.055 0.046 0.294 0.096 0.091 0.283



%P |[Experiments

= MED performance comparison (MinNDC/AP)

, 1.211 1.001 0.885 1.001 0.939 0.882
Birthday party
0.030 0.019 0.079 0.021 0.051 0.076
, , , 1.187 1.001 0.670 1.001 0.862 0.636
Changing a vehicle tire
0.006 0.006 0.023 0.006 0.013 0.030
_ 1.139 1.001 0.629 1.001 0.509 0.568
Flash mob gathering
0.050 0.042 0.198 0.059 0.291 0.228
_ . 1.031 0.902 0.802 0.970 0.586 0.711
Getting a vehicle unstuck
0.019 0.027 0.051 0.018 0.107 0.083
1.317 1.001 0.856 0.925 0.814 0.856

Grooming an animal
0.006 0.013 0.046 0.025 0.056 0.047



%P |[Experiments

= MED performance comparison (MinNDC/AP)

, , 1.355 1.001 0.821 1.001 0.843 0.858
Making a sanawich
0.008 0.009 0.034 0.010 0.029 0.030
1.091 0.991 0.654 1.001 0.712 0.632
Parade
0.035 0.028 0.093 0.019 0.083 0.108
1.156 0.955 0.570 1.001 0.566 0.449
Parkour
0.014 0.005 0.047 0.009 0.050 0.055
o _ 0.971 1.001 0.550 0.822 0.664 0.508
Repalring an appliance
0.027 0.018 0.102 0.029 0.056 0.109
_ _ _ 1.188 1.001 0.706 0.974 0.833 0.612
Working on a sewing project
0.012 0.008 0.037 0.016 0.027 0.054
1.163 0.986 0.719 0.976 0.752 0.682

Average
0.035 0.035 0.137 0.044 0.118 0.148



%P |[Experiments

= Performance comparison between using 30 and 65 external
concepts (MInNDC/AP)

SCR (30C) | SCR (65C) | SAIR (30C) | SAIR (65C)

, , 0.811 0.742 0.764 0.775
Attempting a board trick
0.215 0.274 0.246 0.248
, , 0.976 0.981 0.961 0.964
Feeding an animal
0.071 0.079 0.091 0.089
0.722 0.704 0.625 0.626

Landing a fish
0.214 0.234 0.286 0.281



%P |[Experiments

= Convergence
I—EAIH_

=

&
133453;_59“1

Iteration Number



&P Summary

= The Intermediate representation is tightly
coupled with the classifier

= Mutual benefit is attained
= External videos provide extra cues
= Promising results on TRECVID MED videos

Z. Ma, Y. Yang, N. Sebe, K. Zheng, A. G. Hauptmann: “Multimedia Event Detection Using
a Classifier-Specific Intermediate Representation, IEEE Transactions on Multimedia,
15(7):1628-1637, 2013



V Outline

s Feature Selection (Q1)

= Semi-supervised Feature Analysis (Q2)
= Visual Info Helps Text Retrieval (Q3)

m Classifier-specific Representation (Q4)
= Knowledge Adaptation for MED (Q5)



%’| Knowledge Adaptation
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QUESTION 5:

How can we guarantee reasonable multimedia
event detection accuracy when only few positive
exemplars are provided?



%P |Inspiration

B The information from few positive examples Is
limited
B Borrow strength from other multimedia resources

B Concepts-based videos are used as auxiliary

resource



A Noticeable Difference

= No requirement for the consistency between
the auxiliary and target domains in feature

type
s Benefits:

= Flexible with the situation that data collection
platforms change or augment their capabilities






Methodology

Map the homogeneous features of the auxiliary and
target videos (i.e., Modality A) into another space by a
nonlinear mapping

The video concept classifier and the video event detector
obtained from the homogeneous features have common
components which contain irrelevance and noise:
remove by joint optimization

Another event detector of MED videos is trained based
on Modality B

Integrate the two event detectors for optimization after
which the decision values from both are fused for the
final prediction



Framework

Auxiliary Concept-based Videos

feature @ extraction feature extraction
Modality A Modality A Modality B
nonlinear\ / mapping nonlinear mapping
X Auxiliary - B Event
Representation A €= concept labels detector AB
. Training Prediction
F Representation A |€ gata labels consistency
TOomEO0 OmEm . ®m ;h_d_ T OomnD Omom (@ _ __ T(m) |
SS=S 8228 8 hw. SSSE EEES B Vnmim|g
EOED - DEED g components | e E@. -mmm@ O @ Melevance | g
EEOE EEEE (] mining - EE s sSEE——a andnoise | O
EDEOO0 OE0O0 = EDEC OmO0 = =
EOO0OBR BEOEO (] ECOO0E BEOCEO (= O
EDNEO DO@®E = SO Ee—aeoo—o- O
Concept classifier Event . Event
P detector A Knowledge Adaptation detector A

Target Training Videos

Target Testing Videos
feature extraction

Modality B Modality A

nonlinear mapping

|

Fusion

¥

Final decision values

———> v uonejussaiday

Z. Ma, Y. Yang, N. Sebe and A. G. Hauptmann: “Knowledge Adaptation with
Partially Shared Features for Event Detection Using Few Exemplars". IEEE
Transactions on Pattern Analysis and Machine Intelligence, 36(9):1789-1802, 2014



&P Objective function (1)

1. Associate the low-level representation and high-level
semantic concepts

target training
videos

event detector (modality A)

/

min E Pr + 1:b — v

Py by

2,1
2. Do the same for the auxiliary videos

auxiliary videos — / event detector
1111T1 ‘XTHQ + 1,6, — Y,

2.1

3. The predicted labels in modalities A and B are consistent

event detector (modality B)
- /
.:{-F Iir i ZT PL




Objective function (2)

Pr Wi Wa b ba

+

min

XI'Ww, +1,b. — Y,

Auxiliary Concept—\
based Videos

E?Pﬁ_ + ].glbt — Ut

+|
31

X'w, -
,T\

Z Py

/ Target Training
Videos

N

2

F' 1

W B+ BUW: T + Wall7)

avoids
overfitting



&P Experiments

= Datasets:
= TRECVID MED 2010
= TRECVID MED 2011 development set

= TRECVID 2012 semantic indexing task dev. set
= auxiliary videos
= concepts with few positive examples are removed
= 65 concepts related to human, environment and objects
= 3244 video frames

= UCFS0
= auxiliary videos
= 50 actions
= 6681 video clips

} 9746 video clips



&P Experiments

= Features
= Overlapping: SIFT + CSIFT (SIN12 as auxiliary data)
STIP (UCF50 as auxiliary data)
= Different: MFCC

= Setting
= 10 positive example



&P Experiments

= Comparison algorithms:

= Heterogenous Features based Structural Adaptive
Regression (HF-SAR)

= Structural Adaptive Regression (SAR), ACM MM

= Adaptive Multiple Kernel Learning (A-MKL), T-PAMI
= Multiple Kernel Transfer Learning (MKTL), ICCV

s SAR&SVM

= SVM

= TaylorBoost, CVPR
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&P | Experiments

= Average results (MinNDC/Pmd@TER=12.5/AP)

A-MKL MKTL SAR&SVM ;iyo'gtr HE-SAR
0.860 0.881 0.873 0.841 0.850 0.902 0.817

0.601 0.617 0.610 0.572 0.575 0.677 0.549
0.162 0.144 0.153 0.183 0.181 0.080 0.201



%P | Experiments

= When using UCF50, HF-SAR is similarly more robust than
SVM

s HF-SAR is better than SVM for 17, 17, 15 events with
different metrics

Average performance of SVM and SAR

Evalua_tlon SVUM HE-SAR Relative
Metric Improvement

MinNDC 0.965 0.932 3.5%
Pmd@TER=12.5  0.857 0.764 12.2%
AP 0.069 0.098 42.0%



%P | Experiments

= Influence of knowledge adaptation
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&P | Experiments

= Influence of auxiliary concepts
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&P Summary

= An attempt on MED with few exemplars

= More generic, complicated and meaningful
events

= Knowledge adaptation from concepts-
nased videos

= Heterogeneous feature type
s Effectiveness on TRECVID MED videos




©

Conclusion

Focused on image and video annotation and MED
From algorithm perspective:

Feature selection - Solution for Q1: A better representation?
Semi-supervised learning - Solution for Q2: With few labels?
Multimodal approach - Solution for Q3: multiple modalities?

Shared subspace learning - Solution for Q4: Classifier-specific
Intermediate representation?

Transfer learning - Solution for Q5: Handling complex event
detection with few exemplars?

From application perspective:
= Concepts to events

= Images to videos

===  Progressive Process



&P Ongoing Work

= Harnessing different features jointly as
symbiotic solutions

= Model the importance of negative examples

= Knowledge adaptation that leverages
unlabeled data in multiple related domains

= Knowledge adaptation between two domains
that have partially shared data features

= User-centric research problems



