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State of the art?



How to attain better multimedia 
content understanding?



QUESTION 1:
Is it possible to get a compact feature 
representation? Would the accuracy be improved 
as a result?

Feature Selection



QUESTION 2:

Is there any way to attain a reasonable 
performance when only few labeled images and 
videos are available?

paucity of precise 
labels

paucity of precise 
labels

Semi-supervised Learning



QUESTION 3:
Can we use other modalities (e.g., text) to 
improve the analysis? Can visual information 
help text retrieval?

Multimodal Analysis



QUESTION 4:

Can we skip the explicit concept detection 
process but learn an intermediate representation 
using the available multimedia archives related 
to various concepts for complicated events?

Classifier-specific Representation



QUESTION 5:
How can we guarantee reasonable multimedia 
event detection accuracy when only few positive 
exemplars are provided?

Knowledge Adaptation



Multimedia Data

Module 1
Noisy & 

Redundant 
Representation?

Feature 
Selection
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Few Labels?
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Events?
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RepresentationAuxiliary 
Multimedia 

Data

A Generic Framework
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Events & Few 
Labels?
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Adaptation

Module 3
Text & Visual 
Information?

Multimodal 
Analysis

feature   extraction



Things and Stuff:
A Computer Vision Perspective

Some slides courtesy of Heitz & Koller, Uijlings et. al



Things vs. Stuff
Stuff: Material defined by a 
homogeneous or repetitive 
pattern of fine-scale properties, 
but has no specific or distinctive 
spatial extent or shape

Thing: An object with a 
specific size and shape



Finding Things

Context is key!



Zürich: a city and its trams 

Context

D. Gatica-Perez



Context



Disambiguation using relative locations of detected boxes

Riding Horse or Feeding Horse?

Context

Human

Horse



Riding Horse or Feeding Horse?

Context



Context



Outline

 Sliding Window
 Selective Search vs. Sliding Window
 What is Context?
 The Things and Stuff (TAS) model
 Results



Scenes, Objects, and Parts

Features

Parts

Objects

Scene

E. Sudderth, A. Torralba, W. Freeman, A. Willsky. ICCV 2005.



The statistical viewpoint
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• Discriminative methods model posterior

• Generative methods model likelihood and 
prior

The statistical viewpoint



Discriminative

• Direct modeling of 

Zebra

Non-zebra

Decision
boundary
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• Model                        and 
Generative
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Three main issues

 Representation
 How to represent an object category

 Learning
 How to form the classifier, given training data

 Recognition
 How the classifier is to be used on novel data



Object Detection

 Task: Find the things
 Example: Find all the 

cars in this image
 Return a “bounding box” 

for each

 Evaluation:
 Maximize true positives
 Minimize false positives



Sliding Window Detection

 Consider every bounding box
 All shifts
 All scales
 Possibly all rotations

 Each such window gets a score:
 D(W)

 Detections: Local peaks in D(W)
 Pros:

 Covers the entire image
 Flexible to allow variety of D(W)’s

 Cons:
 Brute force – can be slow
 Only considers features in box

D = 1.5

D = -0.3



Object-based Classification

Given an image/video collection: 
Find the objects containing a specific object



Problems:
- Viewpoint changes
- Location
- Illumination conditions

Object-based Classification



Object-based Classification
Problems:
- Same functionality, different manifestations



 First intuition: First find the object, then recognize

segmentation Part-based model
(Fischler and Elschlager 1973)

Object-based Classification



Segmentation

 Segmentation traditionally aimed for unique 
partitioning

But this never resulted in the necessary accuracy for 
subsequent recognition



Part-based Classification

Fergus, Perona, Zisserman, 2003

No segmentation. Collection of spatially related local image details



Bag-of-Words

 No segmentation
 No location

Sivic et al. 2003, Csurka et al. 2004



Bag-of-Words



Bag-of-Words



Pixel-wise gradient responses

Bag-of-Words



Pixel-wise gradient responses

Descriptor Space
Bag-of-Words



Pixel-wise gradient responses

Descriptor Space
Bag-of-Words



Pixel-wise gradient responses

Descriptor Space
Bag-of-Words



Descriptor Space

Bag-of-Words



Add SIFT descriptors from many training images

Descriptor Space

Bag-of-Words



Clustering

Descriptor Space

Bag-of-Words



The clusters partition the descriptor space. Each cluster is called a “Visual Word”

Descriptor Space

Bag-of-Words



Pixel-wise gradient responses

Descriptor SpaceBag-of-Words



Pixel-wise gradient responses

Descriptor SpaceBag-of-Words



Global Representation

Pixel-wise gradient responses

Descriptor SpaceBag-of-Words
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Bag-of-Words



Bag-of-Words details

 Extreme dense sampling at every pixel
 Local patches of 16 by 16 pixels
 SIFT, Opponent SIFT, and RGB-SIFT
 Visual Vocabulary using Random Forests, 4 binary 

trees of depth 10 = 4096 visual words
 SVM with Histogram Intersection kernel









Conclusions Bag-of-Words

 Works well enough for retrieval purposes
 No segmentation
 No object location



Conclusions Bag-of-Words

 Works well enough for retrieval purposes
 No segmentation
 No object location

 What do we lose by ignoring object location?
 Which parts of the image are important for 

recognition?



The Visual Extent of an Object

 What do we lose by ignoring object location?
 Which parts of the image are important for 

recognition?

Uijlings, Smeulders, Scha, IJCV 2012



How BoW classifies images
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How BoW classifies images



How BoW classifies images



 Bag-of-Words works really on local details, 
although details are slightly larger than 
patches

 Bag-of-Words uses details from both the 
object and its surroundings

 Individual details are not very object or 
surrounding specific

Uijlings, Smeulders, Scha, IJCV 2012

How BoW classifies images



Importance of Object Localization
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Importance of Object Localization



 Global Bag-of-Words: 0.54 MAP
 Object Only: 0.68 MAP

Average Precision:

Importance of Object Localization



 Knowing the object location increases performance 
by 26%, from 0.54 to 0.68 MAP

 When object location is known, the surround adds 
very little information

Uijlings, Smeulders, Scha, IJCV 2012

Importance of Object Localization



 Knowing the object location increases performance 
by 26%, from 0.54 to 0.68 MAP

 When object location is known, the surround adds 
very little information

 Need to incorporate the notion of object location

Importance of Object Localization



Outline

 Sliding Window
 Selective Search vs. Sliding Window
 What is Context?
 The Things and Stuff (TAS) model
 Results



Localisation: Exhaustive Search

 100,000-1,000,000 locations. Imposes huge 
computational constraints on subsequent 
methods



Localisation: Segmentation

 10-100 locations but captures few objects



Localisation: Segmentation

 Sliding window: 100,000-1,000,000 locations. Imposes 
huge computational constraints on subsequent methods

 Segmentation: 10-100 locations, but captures few objects



Segmentation as Selective Search

 Rethink segmentation:
 High Recall

 Coarse locations are sufficient (boxes)

 Fast to compute



Segmentation as Selective Search

 An image is intrinsically hierarchical. A 
segmentation at a single scale cannot find all 
objects



Segmentation as Selective Search

 Use all locations from a hierarchical grouping

Object hypotheses from
all hierarchy levels

Oversegmentation
(Felzenszwalb 2004)

Hierarchical grouping
of segments



Segmentation as Selective Search

 No single segmentation strategy works 
everywhere

 We need a set of complementary segmentation 
strategies

Color cues work best Texture cues work, color fails



Segmentation as Selective Search

 Hierarchical Grouping
 Use of a variety of color spaces with 

complementary invariance properties
 Different grouping criteria: Colour, Texture, Size, 

Insideness
 2 methods:

 Fast: uses 8 different hierarchical groupings

 Quality: uses 80 different hierarchical groupings

Van de Sande, et al, ICCV 2011



Segmentation as Selective Search

MAVO: Mean Average Best Overlap
rgI is normalized R and G and intensity. H is the Hue from HSV.
C = color, T = texture, S = Size, F = Fill/Insideness
k is the parameter for the initial oversegmentation. Higher k means fewer, larger initial regions



Evaluation of Locations

 Pascal Overlap Criterion

 Correctly localised if best overlap > 50%
 Recall is the % of objects for which there is a 

location with > 50% overlap



Evaluation of Locations



Evaluation of Locations



Evaluation of Locations



Evaluation of Locations

 What does a .88 Best Overlap score mean?

Overlap 88.4% Overlap 87.9% Overlap 87.4%



Selective Search in Object Localisation

 Goal: Identify and find the location of the 
objects. An object is found if the Pascal 
Overlap (MABO) score > 50%



Selective Search in Object Localisation

Pascal VOC 2010
- Best results for 9 out of 20 object classes
- Works especially well on non-rigid object classes
- All competing methods are based on exhaustive search with HOG-features

Sande, et al. ICCV 2011



Object Localisation

 Quality of locations is close to optimal for this 
Bag-of-Words system



Conclusions Selective Search

 Results in a small yet high quality set of 
potential object locations

 Works by rethinking segmentation:
 Focus more on Recall than Precision

 Hierarchical grouping to deal with objects at multiple 
scales

 Multiple complementary strategies to deal with high 
variety in image conditions

 Enables use of more expensive features



Is Exact Localisation Optimal?



Is Exact Localisation Optimal?



Is Exact Localisation Optimal?

Parts were earlier used in “visual identification”
Learning to Locate Informative Features for Visual Identification, IJCV 2008,
A. Ferencz, E. Learned-Miller, J. Malik



Is Exact Localisation Optimal?

Parts may be more discriminative because of pose change, 
often caused by interaction between the objects



Is Exact Localisation Optimal?

For occluded objects only the non-occluded part is informative.



Is Exact Localisation Optimal?

In crowded scenes, compared to an individual object:
a collection is both more easy to find and may be more discriminative



Is Exact Localisation Optimal: NO

 Parts may be more discriminative for some 
classes

 Interacting objects may change pose, 
retaining typical appearance only for object 
parts

 Occluded objects are hard to find when 
searching for complete objects

 In crowded scenes groups are more easy to 
recognize

The Windows that Tell the Story of an Image, J.R.R. Uijlings and A.W.M. Smeulders



The Most Telling Window

 May focus on:
 Object Parts

 Complete Objects

 Object Collections

The Windows that Tell the Story of an Image, J.R.R. Uijlings and A.W.M. Smeulders.



Methodology: Object Location

 Most Dominant: 
Sliding Windows

 But yields 100.000 – 1.000.000 windows:
infeasible for powerful Bag-of-Words 
implementation

 Solution: Selective Search



Methodology: Object Location

 Selective Search which uses multiple, 
complementary, hierarchical segmentations



Methodology: Object Location

 Small set of class-independent locations
 Captures parts, objects, and collections

Example windows
generated by the
method:



Methodology: Framework

Descriptor
Extraction

Visual Word
Assignment

Use
Complete

image
Classification

Use
Complete

image

Train SVM
model

Training

Classification

Normal Bag-of-Words



Methodology: Framework

Descriptor
Extraction

Visual Word
Assignment

Selective
Search

Locations
Classification

Use
ground truth

windows

Train SVM
model

Training

Classification

Most Telling Window



Methodology: Framework

Descriptor
Extraction

Visual Word
Assignment

Selective
Search

Locations
Classification

Extra Negatives

Use
ground truth

windows

Train SVM
model

Training

Classification

Most Telling Window

Retraining: e.g. Laptev 2009, Felzenszwalb et al. 2010



Localisation vs Most Telling Window

Most Telling WindowLocalisation

No negative examples from positive images!



 Large difference in motivation:
 Parts

 Complete objects

 Collections of objects

 Subtle difference in training windows
 Significant difference in final results
 (Of course, it would be better to also obtain new 

positive examples in retraining loop)

Localisation vs Most Telling Window



Implementation details
 Pixel-wise sampling
 (Colour) SIFT descriptors (Lowe04, Sande2010)
 K-means visual vocabulary
 Hard assignment.
 Store “Visual Word Images”
 Spatial Pyramid (Lazebnik06). BoW:1x1,2x2,1x3. 

MTW:2x2/4x4
 Bag-of-Words GPU acceleration (Sande2011)
 Selective Search
 Support Vector Machine with Histogram Intersection kernel. 

Fast additive classification (Maji 2009)



Results

Comparable with top scores reported in e.g. Chatfield et al. BMVC 2011
- We: Pixel-wise sampling, 5 Colour SIFT (Sande 2010), kmeans vocabulary 4096
- Chatfield et al.: dense sampling, grey-SIFT only, Fisher/Sparse coding



Results

Significant improvement by using not the whole image but its Most Telling Window

Context!



Results

Most Telling Window consistently outperforms Exact Localisation (using same basic framework)



Results

Scores Detection Task: Felzenszwalb: 0.253 MTW: 0.317, Our localisation: 0.336,
Discrepancy in results on detection and classification suggests that exact localisation tends to
hallucinate objects that are not there while Most Telling Window finds object approximately.



Results

Final combination by cross-validation using weighted addition of classifier output:
- 2 parts Most Telling Window SP 4x4     - 2 parts Localisation (Felzenszwalb 2010)
- 1 part Most Telling Window SP 2x2           - 1 part global Bag-of-Words

3 variations of global Bag-of-Words and our exact localisation were discarded. Location is crucial!



Visualising the Most Telling 
Window of top‐ranked images

High-ranked
Positives

High-ranked
Negatives

Aeroplane



Visualising the Most Telling 
Window of top‐ranked images

High-ranked
Positives

High-ranked
Negatives

Bicycle



Visualising the Most Telling 
Window of top‐ranked images

High-ranked
Positives

High-ranked
Negatives

Cat



Visualising the Most Telling 
Window of top‐ranked images

High-ranked
Positives

High-ranked
Negatives

Cow



Visualising the Most Telling 
Window of top‐ranked images

High-ranked
Positives

High-ranked
Negatives

Motorcycle



Visualising the Most Telling 
Window of top‐ranked images

High-ranked
Positives

High-ranked
Negatives

Person



Conclusions Most Telling Window
 The Most Telling Window is the window that is the most 

discriminative for classifying the presence of an object: can 
be (1) object part; (2) whole object; (3) object collection

 First time that window within the image yields better results 
by itself than whole image?

 The Most Telling Window works better than exact 
localisation

 Suboptimal positive windows suggest room for 
improvement

 Selective Search enables powerful, local Bag-of-Words
 Class independent parts, wholes, and collections



Outline

 Sliding Window
 Selective Search vs. Sliding Window
 What is Context?
 The Things and Stuff (TAS) model
 Results



Satellite Detection Example

D(W) = 0.8

D(W) = 0.8



Prior:
Detector Only

Posterior:
TAS Model

Region Labels

Detections in Context

Task: Identify all cars in 
the satellite image

Idea: The surrounding 
context adds info to the 
local window detector 

+ =
Houses

Road



Error Analysis
Typically…

We need to look outside 
the bounding box!

False Positives are
OUT OF CONTEXT

True Positives are
IN CONTEXT



Types of Context

 Scene-Thing:

 Stuff-Stuff:

gist car “likely”

keyboard “unlikely”

 Thing-Thing:

[ Torralba et al., LNCS 2005 ]

[ Gould et al.,
IJCV 2008 ]

[ Rabinovich et 
al., ICCV 2007 ]



Types of Context

 Stuff-Thing:
 Based on spatial 

relationships

 Intuition:

Trees = no cars

“Cars drive on roads”

“Cows graze on grass”

“Boats sail on water”
Goal: Unsupervised



Outline

 Selective Search vs. Sliding Window
 What is Context?
 The Things and Stuff (TAS) model
 Results



Things
 Detection “candidates”

 Low detector threshold -> “over-detect”
 Each candidate has a detector score



Things

 Candidate detections
 Image Window Wi + Score

 Boolean random variable Ti
 Presence/absence of the target 

class in the window i

 Thing model: conditional 
prob. from window features 
to prob. that window 
contains the object

Ti

Image
Window

Wi

))(exp(1
1)(

WD
WTP i 






Stuff
 Coherent image regions

 Segment image into regions: coarse 
“superpixels”

 For each region extract color & 
texture feature vector Fj in Rn

 Generative model: each region has 
a hidden class label Sj in {1…C}

 Stuff model
 Naïve Bayes Sj

Fj

 jjjjj SFPSPFSP )(),( 

   ssjj sSF  ,~ 



Relationships

 Descriptive Relations
 “Near”, “Above”, 

“In front of”, etc.

 Choose set R = {r1…rK}
 Rijk=1: Detection i and 

region j have relation k
 Relationship model

S72 = Trees

T1

Rijk

Ti Sj R1,10,in=1



The TAS Model

RijkTi Sj

Fj

Image
Window

Wi

Wi:   Window

Ti:    Object Presence

Sj:    Region Label

Fj:    Region Features

Rijk:  Relationship

N

J

K

Supervised
in Training Set

Always
Observed

Always
Hidden



Unrolled Model

T1

S1

S2

S3

S4

S5

T2

T3

R2,1,above = 0

R3,1,left = 1

R1,3,near = 0

R3,3,in = 1

R1,1,left = 1

Candidate
Windows

Image
Regions



Learning the Parameters

 Assume we know R
 Sj is hidden

 Everything else observed
 Expectation-Maximization

 “Contextual clustering”
 Parameters are readily 

interpretable

RijkTi Sj

Fj

Image
Window

Wi

N

J

K

Supervised
in Training Set

Always
Observed

Always
Hidden



Learned Satellite Clusters



Which Relationships to Use?

 Rijk = spatial relationship 
between candidate i and region j

Rij1 = candidate in region
Rij2 = candidate closer than 2 bounding boxes (BBs) to region
Rij3 = candidate closer than 4 BBs to region
Rij4 = candidate farther than 8 BBs from region
Rij5 = candidate 2BBs left of region
Rij6 = candidate 2BBs right of region
Rij7 = candidate 2BBs below region
Rij8 = candidate more than 2 and less than 4 BBs from region
…
RijK = candidate near region boundary

How do we  avoid overfitting?



Inference
 So far, we assumed a known set of relationships
 But, different data may require different types of 

contextual relationships => learn which one to use 
 Define a large set C of “candidate relationships” (i.e., all 

possible relationships to be included) 
 Search through C for the subset of “active” relationships R 

that best facilitates the use of context
 If a relationship is “inactive” => remove the edges from 

all Ti and Sj to the Rijk variables for this particular k. 
 With this view of “activating” relationships by including 

the edges in the Bayesian Network, we can formulate our 
search for R as a structure learning problem



Learning the Relationships

 Intuition
 “Detached” Rijk = inactive 

relationship
 Structural EM iterates:

 Learn parameters
 Decide which edge to toggle

 Evaluate with l(T|F,W,R)
 Requires inference
 Better results than using 

standard E[l(T,S,F,W,R)]

Rij1

Ti Sj

Fj

Rij2 RijK



Learning the Relationships



Inference

 Goal: find the probability that 
each window contains the object

 This expression involves a summation 
over an exponential set of values for the S     
vector of variables
 solve the inference problem approximately using a 

Gibbs sampling MCMC method (Geman&Geman, 1987) 



Inference

 Block Gibbs Sampling
 Initial assignment to the variables
 in each Gibbs iteration resample all 

of the S’s and then resample all the 
T’s according to the following two 
probabilities:



Outline

 Selective Search vs. Sliding Window
 What is Context?
 The Things and Stuff (TAS) model
 Results



Features: Edge fragments

Weak detector = Match of 
edge chain(s) from training 
image to edgemap of test 
image

Opelt, Pinz, Zisserman, 
ECCV 2006

BOOSTING!



Base Detector - HOG

[ Dalal & Triggs, CVPR, 2006 ] HOG Detector:

Feature Vector X SVM Classifier



Results - Satellite

Prior:
Detector Only

Posterior:
Detections

Posterior:
Region Labels



Results - Satellite

40 80 120 1600

0.2

0.4

0.6

0.8

1

False Positives Per Image (fppi)

R
ec

al
l R

at
e

Base Detector
TAS Model

~10% improvement in recall at 40 fppi



Base Detector Error Analysis

Cows



Discovered Context - Bicycles

Bicycles

Cluster #3



TAS Results – Bicycles

 Examples

 Discover “true positives”

 Remove “false positives”
BIKE

? ?
?



Results – VOC 2005



Results – VOC 2006





Conclusions

 Detectors can benefit from context
 The TAS model captures

an important type of context
 Can improve any sliding window/selective 

search detector using TAS
 The TAS model can be interpreted and 

matches our intuitions
 We can learn which relationships to use 



Image Low-level 
vision features

(edges, SIFT, HOG, etc.)

Object detection
/ classification

Input data
(pixels)

Learning
Algorithm

(e.g., SVM)

feature 
representation 
(hand-crafted)

Features are not learned

Traditional Recognition Approach



SIFT Spin image

HoG
and many others:

Textons

Computer vision features

SURF, MSER, LBP, Color-SIFT, Color histogram, GLOH, …..



Motivation
 Features are key to recent progress in recognition
 Multitude of hand-designed features currently in use
 Where next? Better classifiers? Building better 

features?

Felzenszwalb, Girshick,
McAllester and Ramanan, PAMI 2007

Yan & Huang
(Winner of PASCAL’10 classification competition)

Slide: R. Fergus



What Limits Current Performance?

• Also removal of part deformations has small (<2%) effect.
– Are “Deformable Parts” necessary in the Deformable Parts Model?

Divvala, Hebert, Efros, ECCV 2012

• Replace each part with humans (Amazon Turk):

Parikh & Zitnick, 
CVPR’10

Slide: R. Fergus



• Mid-level cues

Mid-Level Representations

“Tokens” from Vision by D.Marr:

• Object parts:

Continuation Parallelism Junctions Corners

• Difficult to hand-engineer What about learning them?
Slide: R. Fergus



Learning Feature Hierarchy
• Learn hierarchy

• All the way from pixels  classifier

• One layer extracts features from output of previous layer

Layer 1 Layer 2 Layer 3 Simple
Classifier

Slide: R. Fergus

Image/Video 
Pixels

• Train all layers jointly



1. Learn useful higher‐level features from images

2. Fill in representation gap in recognition

Feature representation

Input data

1st layer 
“Edges”

2nd layer 
“Object parts”

3rd layer 
“Objects”

Pixels

Lee et al., ICML 2009; 
CACM 2011

Learning Feature Hierarchy



• Better performance

• Other domains (unclear how to hand engineer):
– Kinect
– Video
– Multi spectral

• Feature computation time
– Dozens of features now regularly used [e.g., MKL]
– Getting prohibitive for large datasets (10’s sec /image)

Slide: R. Fergus

Learning Feature Hierarchy



Approaches to Learning Features

• Supervised Learning
– End‐to‐end learning of deep architectures (e.g., deep
neural networks) with back‐propagation

– Works well when the amounts of labels is large
– Structure of the model is important (e.g.
convolutional structure)

• Unsupervised Learning
– Learn statistical structure or dependencies of the data 
from unlabeled data

– Layer‐wise training
– Useful when the amount of labels is not large



Convolutional Neural Networks

• LeCun et al. 1989

• Neural network with 
specialized connectivity 
structure

Slide: R. Fergus



Convolutional Neural Networks
• Feed‐forward:

– Convolve input
– Non‐linearity (rectified linear)
– Pooling (local max)

• Supervised
• Train convolutional filters by
back‐propagating classification error

LeCun et al. 1998

Input Image

Convolution
(Learned)

Non- linearity

Pooling

Feature maps

Slide: R. Fergus



Components of Each Layer

Pixels /
Features

Filter with
Dictionary
(convolutional
or tiled)

Spatial/Feature 
(Sum or Max)

Normalization 
between 
feature 

responses

Output
Features

+ Non-linearity

[Optional]

Slide: R. Fergus



Filtering
Convolutional
– Dependencies are local
– Translation equivariance
– Tied filter weights (few params)
– Stride 1,2,… (faster, less mem.)

.

.

.

Slide: R. Fergus
Input Feature Map



Non-Linearity

• Non-linearity
– Per-element (independent)
– Tanh
– Sigmoid: 1/(1+exp(-x))
– Rectified linear

• Simplifies backprop
• Makes learning faster
• Avoids saturation issues

• Preferred option

Slide: R. Fergus



Pooling
• Spatial Pooling

– Non‐overlapping / overlapping regions
– Sum or max
– Boureau et al. ICML’10 for theoretical analysis

Max

Sum

Slide: R. Fergus



Normalization
• Contrast normalization (across feature maps)

– Local mean = 0, local std. = 1, “Local” 7x7 Gaussian
– Equalizes the features maps

Feature Maps
Feature Maps

After Contrast Normalization

Slide: R. Fergus



Krizhevsky et al. [NIPS 2012]

• 7 hidden layers, 650,000 neurons, 60,000,000 parameters
• Trained on 2 GPUs for a week

• Same model as LeCun’98 but:
- Bigger model (8 layers)
- More data (106 vs 103 images)
- GPU implementation (50x speedup over CPU)
- Better regularization (DropOut)



Multimedia Data

Module 1
Noisy & 

Redundant 
Representation?

Feature 
Selection

Module 2 Module 4

Few Labels?
Complicated 

Events?

Semi-
supervised 
Learning

Classifier-
specific 

RepresentationAuxiliary 
Multimedia 

Data

A Generic Framework

Module 5
Complicated 

Events & Few 
Labels?

Knowledge 
Adaptation

Module 3
Text & Visual 
Information?

Multimodal 
Analysis

feature   extraction



Outline

 Feature Selection (Q1)
 Semi-supervised Feature Analysis (Q2)
 Visual Info Helps Text Retrieval (Q3)
 Classifier-specific Representation (Q4)
 Knowledge Adaptation for MED (Q5)



QUESTION 1:
Is it possible to get a compact feature 
representation? Would the accuracy be improved 
as a result?

Feature Selection



Motivation

 Images are represented by various features
 Feature selection eliminates noise and 

redundancy 
 Feature selection can improve both 

classification accuracy and computational 
efficiency

 Web images are usually multi-labeled

Z. Ma, F. Nie, Y. Yang, J. Uijlings and N. Sebe: “Web Image Annotation via Subspace-
Sparsity Collaborated Feature Selection". IEEE Transactions on Multimedia, 14(4): 
1021-1030, 2012.



Related Work

 Feature Selection
 traditional approach: individual evaluation of 

features, e.g., Duda et al. [1]
 Problem: low efficiency, does not consider feature 

correlation
 sparse feature selection:  joint evaluation, e.g., 

Yang et al. [2] 
 Problem: does not consider concept correlation

[1] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification (2nd ed.). Wiley-
Interscience, New York, USA, 2001.
[2] Y. Yang, H. T. Shen, Z. Ma, Z. Huang, and X. Zhou. L21-norm regularized 
discriminative feature selection for unsupervised learning. In IJCAI, 2011.



Methodology

 Sparse model

 Shared subspace learning 

Advantages:

 Batch-mode: evaluates features jointly across all data 

points

 considers the correlation between different concept 

labels



Formulation

 Feature Selection

 Joint feature selection with sparsity

 - norm regularized model [3]

loss function guarantees the optimized W to be sparse, i.e., 
some (many) of its rows shrink to zero.  W can 
be viewed as the combination coefficients for 
the most discriminative features 

[3] A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature learning. In NIPS, 2007

l2,1



Formulation (Cont’d)

 Shared subspace learning [4]

 Objective Function:

ground truth labelstraining data

weights

min
W ,V ,P,Q

loss(W T X,Y ) (V ,P)

s.t.   QTQ  I ,   W V QP

shared subspace

[4] R. Ando, and T. Zhang. A framework for learning predictive structures from 
multiple tasks and unlabeled data. JMLR, 2005. 

controls the complexity

regulates the information to each specific label

assumes multi-label images share 
common attributes, e.g.,. an image 
labeled “parade", “people" and 
“street" share “people" with another 
one labeled “party“ and “people”



Experiments

 Datasets:
 MSRA-MM 2.0: web images, diverse, multi-labeled
 NUS-WIDE: Flickr images, diverse, multi-labeled, large-

scale

 Features: Color Correlogram
Edge Direction Histogram
Wavelet Texture

MSRA-MM 2.0 NUS-WIDE

Class Number 100 81

Training Set Size 10,000 10,000

Testing Set Size 32,266 199,347



Experiments (Cont’d)

 Comparison algorithms:
 Sub-Feature Uncovering with Sparsity (SFUS)
 All Features
 Fisher Score
 Sparse Multinomial Logistic Regression via Bayesian L1 

Regularisation (SBMLR), NIPS
 Spectral feature selection (SPEC), ICML
 Group Lasso with Logistic Regression (GLRR), ACM MM
 Feature Selection via Joint l2,1 –Norms Minimization 

(FSNM), NIPS



 Results comparison – 10c (class number) training data
MAP/MicroAUC/MacroAUC ± Standard Deviation on MSRA dataset

All Features Fisher Score SBLMR SPEC FSNM GLRR SFUS

0.062±0.001 0.060±0.002 0.056±0.002 0.058±0.001 0.061±0.002 0.060±0.001 0.063±0.001

0.840±0.001 0.861±0.005 0.869±0.003 0.852±0.002 0.875±0.002 0.846±0.001 0.878±0.002

0.655±0.006 0.655±0.003 0.643±0.006 0.650±0.004 0.658±0.006 0.653±0.005 0.662±0.005

MAP/MicroAUC/MacroAUC ± Standard Deviation on NUS dataset

All Features Fisher Score SBLMR SPEC FSNM GLRR SFUS

0.081±0.002 0.080±0.002 0.072±0.008 0.078±0.002 0.092±0.001 0.082±0.002 0.094±0.003

0.842±0.003 0.851±0.003 0.871±0.005 0.847±0.003 0.869±0.002 0.853±0.002 0.877±0.002

0.726±0.003 0.728±0.004 0.718±0.028 0.722±0.003 0.753±0.002 0.732±0.003 0.756±0.003

Experiments (Cont’d)



 Results comparison – 20c (class number) training data
MAP/MicroAUC/MacroAUC ± Standard Deviation on MSRA dataset

MAP/MicroAUC/MacroAUC ± Standard Deviation on NUS dataset

Experiments (Cont’d)

All Features Fisher Score SBLMR SPEC FSNM GLRR SFUS

0.067±0.004 0.066±0.002 0.059±0.001 0.066±0.001 0.068±0.001 0.067±0.001 0.070±0.001

0.859±0.011 0.876±0.004 0.883±0.004 0.868±0.001 0.888±0.002 0.866±0.002 0.888±0.002

0.676±0.013 0.680±0.004 0.666±0.004 0.679±0.002 0.687±0.002 0.680±0.002 0.690±0.002

All Features Fisher Score SBLMR SPEC FSNM GLRR SFUS

0.099±0.001 0.098±0.004 0.073±0.007 0.094±0.001 0.105±0.003 0.105±0.002 0.108±0.002

0.874±0.001 0.880±0.005 0.887±0.006 0.875±0.001 0.888±0.003 0.885±0.003 0.891±0.003

0.767±0.001 0.770±0.005 0.733±0.024 0.763±0.001 0.785±0.004 0.780±0.001 0.789±0.003



 Influence of selected features 

Experiments (Cont’d)



 Convergence

Experiments (Cont’d)



Summary

 Integration of shared subspace learning and joint 
feature selection with sparsity 

 Evaluating feature importance jointly
 Consideration of the correlation between labels
 Promising results on large-scale web image sets

Z. Ma, F. Nie, Y. Yang, J. Uijlings and N. Sebe: “Web Image Annotation via Subspace-
Sparsity Collaborated Feature Selection". IEEE Transactions on Multimedia, 14(4): 
1021-1030, 2012.
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 Feature Selection (Q1)
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QUESTION 2:

Is there any way to attain a reasonable 
performance when only few labeled images and 
videos are available?

paucity of precise 
labels

paucity of precise 
labels

Semi-supervised Learning



Motivation

 Multimedia data are represented by various 
features

 For classification purpose, some noisy and 
irrelevant features may be not useful

 Semi-supervised learning uses the limited 
available labels in an effective way

 It is natural to integrate semi-supervised learning 
with feature selection

Z. Ma, F. Nie, Y. Yang, J. Uijlings, N. Sebe and A. G. Hauptmann: “Discriminating Joint 
Feature Analysis for Multimedia Content Understanding". IEEE Transactions on Multimedia, 
14(6): 1662-1672, 2012.



Problems

 Semi-supervised feature selection

 traditional method: low efficiency, does not consider 

feature correlation

 Sparse feature selection

 is generally realized through supervised learning 

Supervised 
learning
Requires fully 
labeled training 
data



Methodology

 Efficient feature analysis

 Sparse feature selection 

 Semi-supervised via graph Laplacian

Advantages:

 Batch-mode: evaluating features jointly across all 
data points

 Semi-supervised: not so expensive as supervised 
learning
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Formulation

 Feature Selection
 Joint feature selection with sparsity
 - norm regularized model [3]

 Incorporate semi-supervised learning
 Use graph Laplacian 

l2,1



 Semi-supervised learning
 Graph Laplacian construction: L = D – A

 Objective function: use manifold regularization

 Define a predicted label matrix F for all training data
 smooth on Yl and the manifold structure

ground-truth labels;bias termlabeled training data

Formulation



 Objective Function:

 We are able to get F, W, and b simultaneously
 The optimal W obtained can be utilized directly for 

classification as W does feature selection 

argmin
F ,W ,b

Tr(FT LF)Tr (F Y )T U(F Y )    XTW 1nbT  F
F

2
 W 2,1

predicted labels
ground truth labels training data;

sparse coefficients
decision matrix

loss function

Formulation



Experiments

 Datasets
 Image annotation:

 Corel-5K: 50 classes, 5000 images
 MSRA-MM 2.0: 81 classes, 42266 images
 NUS-WIDE: 100 classes, 209347 images

 Video concept recognition:
 Kodak: 22 concepts, 3590 video frames
 CareMedia: 5 concepts, 3913 video sequences
 3D motion data analysis
 HumanEva: 10 classes, 10000 frames



Experiments (Cont’d)

 Comparison algorithms:
 Structural Feature Selection with Sparsity (SFSS)
 Fisher Score (FISHER)
 Sparse Multinomial Logistic Regression via Bayesian L1 

Regularisation (SBMLR), NIPS
 Group Lasso with Logistic Regression (GLRR), ACM MM
 Feature Selection via Joint l2,1 –Norms Minimization 

(FSNM), NIPS
 Semi-supervised Feature Selection via Spectral Analysis 

(sSelect), ICDM
 Locality sensitive semi-supervised feature selection 

(LSDF), Nerocomputing



 Comparison on image annotation

Experiments (Cont’d)



 Comparison on video concept recognition

Experiments (Cont’d)



 Comparison on 3D motion data analysis

Experiments (Cont’d)



 Comparison with semi-supervised algorithms

Experiments (Cont’d)



 Influence of unlabeled data

Experiments (Cont’d)



 Convergence

Experiments (Cont’d)



Summary

 Harnessing discriminating features closely related to the 
concept labels

 Cost saving
 Boosting performance with the usage of unlabeled data
 Analysis of multimedia data structure helps multimedia 

content understanding
 Clear advantages when few training data are labeled
 Applicable to a variety of applications

Z. Ma, F. Nie, Y. Yang, J. Uijlings, N. Sebe and A. G. Hauptmann: “Discriminating Joint 
Feature Analysis for Multimedia Content Understanding". IEEE Transactions on Multimedia, 
14(6): 1662-1672, 2012.
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QUESTION 3:
Can we use other modalities (e.g., text) to 
improve the analysis? Can visual information 
help text retrieval?

Multimodal Analysis



Motivation

 Text-analysis used for vision
[Barnard ICCV 2001]
[Berg ECCV 2010]

E. Bruni, J. Uijlings, M. Baroni, N. Sebe, Distributional semantics with eyes: Using image 
analysis to improve computational representations of word meaning. ACM Multimedia 2012



Motivation

 Text-analysis used for vision

 Multimodal analysis

[Rasiwasia ACM MM 2010]
[Vreeswijk ACM MM 2011]



 Text-analysis used for vision

 Multimodal analysis

 Vision-analysis used for text

?

this research

Motivation



Distributional Semantics

 What is the semantic relatedness between 
two words?

 Applications:
● Query expansion

● Textual advertising

● Information extraction

● Word sense disambiguation



Distributional Semantics

 Distributional Hypothesis:
Word-meaning can be derived from context
[Harris, Charles and Miller, Firth, Wittgenstein, …]

[McDonald & Ramscar 2001]
[Landauer Psych. Rev. 1997]
[Lowe 2001]
[Turney JAIR 2010]
[Baroni 2010]
[Sahlgren 2006]

text images

this research

He filled the wampimuk, passed it
around and we all drunk some

We found a little, hairy wampimuk
sleeping behind the tree



Distributional Semantics

 Distributional Hypothesis:
Word-meaning can be derived from context
[Harris, Charles and Miller, Firth, Wittgenstein, …]

[McDonald & Ramscar 2001]
[Landauer Psych. Rev. 1997]
[Lowe 2001]
[Turney JAIR 2010]
[Baroni 2010]
[Sahlgren 2006]

text images

Few people write that bananas are yellow



Research Questions

 Text vs images: Which semantics are 
captured? 

 Do images improve upon text-only 
semantics?

 How does the distributional hypothesis work 
for images?



Distributional semantics from text



Semantic similarity measured in cosine of angle

Distributional semantics from text



Distributional semantics from images
Bag-of-Words

Global Representation

Pixel-wise gradient responses

Descriptor Space



Instances

moon

Distributional semantics from images



Multimodal distributional semantics

 Concatenation

But: PCA-based smoothing is necessary



Semantics: text vs images
● BLESS dataset [Baroni 2011]

● 200 pivot words

● Human collected relata words in 8 categories
– Coordinate: alligator - lizard

– Hypernym (is-a):  alligator - reptile

– Meronym (part): alligator - teeth

– Attribute: alligator - aquatic

– Event (verb): alligator - swim

– Random noun: alligator - trombone

– Random adjectives: alligator - electronic

– Random verbs: alligator – conclude

● average 7-33 relata per category per pivot



Semantics: text vs images

text images



Semantics: text vs images

text images



Semantics: text vs images

Attributes



1

2

[1] http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/
[2] http://clic.cimec.unitn.it/~elia.bruni/MEN

Improving Distributional Semantics with Eyes

 Datasets with human semantic judgements
● WordSim (WS) [1]:  353 word pairs
● MEN [2]                : 3000 word pairs



Improving Distributional Semantics with Eyes

Spearman correlations with human semantics:



The illustrated distributional hypothesis

The meaning of a word can be derived from context



The illustrated distributional hypothesis

The meaning of a word can be derived from context



surround

object

The illustrated distributional hypothesis

The meaning of a word can be derived from context

Pascal VOC 2007 (20 object classes, 5000 test images)

1) Ground truth object locations
2) Selective Search Localisation



Spearman correlations with human semantic judgments on Pascal VOC 2007

The illustrated distributional hypothesis



Human correlations Object appearance correlations
(automatic localization)

The illustrated distributional hypothesis



Surround appearance correlations
(automatic localization)

The illustrated distributional hypothesis

Human correlations



Summary

 Image and text have complementary semantic 
information

 Image features improve text-based task

 Distributional hypothesis for images works mostly 
on context
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QUESTION 4:

Can we skip the explicit concept detection 
process but learn an intermediate representation 
using the available multimedia archives related 
to various concepts for complicated events?

Classifier-specific Representation



Multimedia Event Detection

Detect the occurrence of an event within a 
video clip based on an Event Kit, which 
contains some text description and some 
example videos

National Institute of Standards and Technology



the abstract or general idea 
inferred from specific 

instances; usually describable 
by a single shot

the abstract or general idea 
inferred from specific 

instances; usually describable 
by a single shot

an observable occurrence that 
interests users; is dynamic and 

has semantic richness; lives 
within a longer video sequence 

an observable occurrence that 
interests users; is dynamic and 

has semantic richness; lives 
within a longer video sequence 



Annotation vs Detection

Associate multimedia data with 
one or multiple semantic labels 

(tags)

Associate multimedia data with 
one or multiple semantic labels 

(tags)

Detect the existence of 
concept/event through pre-

trained detectors

Detect the existence of 
concept/event through pre-

trained detectors

234/33



Progress on Video Content Detection

 TREC Video Retrieval Evaluation (TRECVID)
Sports            News         Repetitive pattern   Surveillance      

 “Event detection in Internet multimedia (MED)” 
2010: more complicated events, e.g., Assembling 
a shelter

235/33



Difficulty of MED
Video 1

Video 2



Inspiration

 Learning to refine multimedia representation
 Limit: the refinement and the classifier training are 

independent

 Concepts-based representation
 Limit: heavily dependent on concept detectors

 Available multimedia archives (concepts & 

events)



Methodology

 Learn an intermediate representation of videos by 
exploiting the target videos and external video 
archives together

 Integrate representation inference and classifier 
training into a joint framework

 Merits:
 The optimization of classifier is event based 
 No need for pre-trained concept detectors

Z. Ma, Y. Yang, N. Sebe, K. Zheng, A. G. Hauptmann: “Multimedia Event Detection Using
a Classifier-Specific Intermediate Representation“, IEEE Transactions on Multimedia,
15(7):1628-1637, 2013



 Given a standard concept-based representation
 Use m annotated external videos                       from c 

classes to pre-train c classifiers            (one for each 
intermediate concept, e.g., fish or boat for “landing a fish”)

 For each training or testing video                   the 
classifiers           are applied to detect the intermediate 
concepts

 Problem:            and f are trained independently

Traditional approach

loss function
label indicating video xi is 
positive/negative example

regularizer

multimedia 
event detector



Formulation
 Joint learning of classifier and representation with 

external videos
 exploit the shared components
 assume that external-based videos and concept-based videos 

have a common intermediate representation

: target & external videos
: labels
: intermediate representation

- avoid arbitrary scaling
- preserve information



Experiments
 Datasets

 Target videos: TRECVID MED 2011 (15 events) 
 External videos: TRECVID MED 2011 development set 

(3 events)

 External videos: TRECVID 2011 semantic indexing 
task development set
 concepts with few positive examples are 

removed
 65 concepts related to human, environment and 

objects
 Features: SIFT & CSIFT & MoSIFT



Events Visualization

Making a cake                        Batting a run                        Assembling a shelter



Attempting a board trick

Feeding an animal

Landing a fish Wedding ceremony

Working on a woodworking project

Events Visualization



Changing a vehicle tire

Getting a vehicle unstuck Grooming an animal

Flash mob gathering

Birthday party

Events Visualization



Parade

Parkour Repairing an appliance

Working on a sewing project

Making a sandwich

Events Visualization



 Comparison algorithms:
 Semantic Analysis via Intermediate Representation 

(SAIR)
 AdaBoost
 TaylorBoost, CVPR
 SVM
 LDA
 Semantic Concept Representation (SCR), ECCV

Experiments



MED performance comparison (MinNDC/AP)
Event AdaBoost TaylorBoost SVM LDA SCR SAIR

Attempting a board trick
1.218 0.995 0.826 0.998 0.742 0.775

0.086 0.094 0.225 0.131 0.274 0.248

Feeding an animal
1.343 1.001 0.963 1.001 0.981 0.964

0.037 0.043 0.087 0.045 0.079 0.089

Landing a fish
1.119 0.932 0.665 0.938 0.704 0.626

0.065 0.097 0.260 0.103 0.234 0.281

Wedding ceremony
1.015 1.001 0.466 1.001 0.582 0.441

0.084 0.067 0.483 0.073 0.322 0.493

Working on a woodworking
project

1.203 1.001 0.726 1.001 0.940 0.711

0.055 0.046 0.294 0.096 0.091 0.283

Experiments



Event AdaBoost TaylorBoost SVM LDA SCR SAIR

Birthday party
1.211 1.001 0.885 1.001 0.939 0.882

0.030 0.019 0.079 0.021 0.051 0.076

Changing a vehicle tire
1.187 1.001 0.670 1.001 0.862 0.636

0.006 0.006 0.023 0.006 0.013 0.030

Flash mob gathering
1.139 1.001 0.629 1.001 0.509 0.568

0.050 0.042 0.198 0.059 0.291 0.228

Getting a vehicle unstuck
1.031 0.902 0.802 0.970 0.586 0.711

0.019 0.027 0.051 0.018 0.107 0.083

Grooming an animal
1.317 1.001 0.856 0.925 0.814 0.856

0.006 0.013 0.046 0.025 0.056 0.047

MED performance comparison (MinNDC/AP)

Experiments



Event AdaBoost TaylorBoost SVM LDA SCR SAIR

Making a sandwich
1.355 1.001 0.821 1.001 0.843 0.858

0.008 0.009 0.034 0.010 0.029 0.030

Parade
1.091 0.991 0.654 1.001 0.712 0.632

0.035 0.028 0.093 0.019 0.083 0.108

Parkour
1.156 0.955 0.570 1.001 0.566 0.449

0.014 0.005 0.047 0.009 0.050 0.055

Repairing an appliance
0.971 1.001 0.550 0.822 0.664 0.508

0.027 0.018 0.102 0.029 0.056 0.109

Working on a sewing project
1.188 1.001 0.706 0.974 0.833 0.612

0.012 0.008 0.037 0.016 0.027 0.054

Average
1.163 0.986 0.719 0.976 0.752 0.682

0.035 0.035 0.137 0.044 0.118 0.148

MED performance comparison (MinNDC/AP)

Experiments



Performance comparison between using 30 and 65 external 
concepts (MinNDC/AP)

Event SCR (30C) SCR (65C) SAIR (30C) SAIR (65C)

Attempting a board trick
0.811 0.742 0.764 0.775

0.215 0.274 0.246 0.248

Feeding an animal
0.976 0.981 0.961 0.964

0.071 0.079 0.091 0.089

Landing a fish
0.722 0.704 0.625 0.626

0.214 0.234 0.286 0.281

Experiments



Convergence

Experiments



Summary

 The intermediate representation is tightly 
coupled with the classifier

 Mutual benefit is attained
 External videos provide extra cues
 Promising results on TRECVID MED videos

Z. Ma, Y. Yang, N. Sebe, K. Zheng, A. G. Hauptmann: “Multimedia Event Detection Using
a Classifier-Specific Intermediate Representation“, IEEE Transactions on Multimedia,
15(7):1628-1637, 2013
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QUESTION 5:
How can we guarantee reasonable multimedia 
event detection accuracy when only few positive 
exemplars are provided?

Knowledge Adaptation



Inspiration

 The information from few positive examples is 

limited

 Borrow strength from other multimedia resources

 Concepts-based videos are used as auxiliary 

resource

255/33



A Noticeable Difference

 No requirement for the consistency between 
the auxiliary and target domains in feature 
type

 Benefits:
 Flexible with the situation that data collection 

platforms change or augment their capabilities 



landing a fish
sparse 
model



 Map the homogeneous features of the auxiliary and 
target videos (i.e., Modality A) into another space by a 
nonlinear mapping

 The video concept classifier and the video event detector 
obtained from the homogeneous features have common 
components which contain irrelevance and noise: 
remove by joint optimization

 Another event detector of MED videos is trained based 
on Modality B

 Integrate the two event detectors for optimization after 
which the decision values from both are fused for the 
final prediction

Methodology



Target Testing VideosAuxiliary Concept-based Videos Target Training Videos

Event 
detector A

Concept classifier

Shared 
components 

mining

Minimizing 
irrelevance 
and noise

Event 
detector AKnowledge Adaptation 

Prediction 
consistency

Final decision values

Event 
detector AB

feature       extractionfeature       extraction

Modality A Modality BModality A

nonlinear    mapping

Representation A

Representation A

Representation ABAuxiliary 
concept labels

nonlinear mapping

Training 
data labels

feature       extraction
Modality B Modality A

Representation AB

nonlinear mapping

Representation A

Decision 
values AB

Decision 
values A

Framework

Z. Ma, Y. Yang, N. Sebe and A. G. Hauptmann: “Knowledge Adaptation with 
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1. Associate the low-level representation and high-level 
semantic concepts 

2. Do the same for the auxiliary videos

3. The predicted labels in modalities A and B are consistent

event detector (modality A)

Objective function (1)

target training 
videos

auxiliary videos event detector

event detector (modality B)



Objective function (2)

Target Training 
VideosAuxiliary Concept-

based Videos

avoids 
overfitting



Experiments
 Datasets:

 TRECVID MED 2010 
 TRECVID MED 2011 development set

 TRECVID 2012 semantic indexing task dev. set
 auxiliary videos 
 concepts with few positive examples are removed
 65 concepts related to human, environment and objects
 3244 video frames

 UCF50
 auxiliary videos 
 50 actions
 6681 video clips

9746 video clips



 Features
 Overlapping: SIFT + CSIFT (SIN12 as auxiliary data)

STIP (UCF50 as auxiliary data)
 Different: MFCC

 Setting
 10 positive example
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 Comparison algorithms:
 Heterogenous Features based Structural Adaptive 

Regression (HF-SAR)
 Structural Adaptive Regression (SAR), ACM MM
 Adaptive Multiple Kernel Learning (A-MKL), T-PAMI 
 Multiple Kernel Transfer Learning (MKTL), ICCV 
 SAR&SVM
 SVM
 TaylorBoost, CVPR

Experiments
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 Average results (MinNDC/Pmd@TER=12.5/AP)

SAR A-MKL MKTL SAR&SVM SVM Taylor
Boost HF-SAR

0.860 0.881 0.873 0.841 0.850 0.902 0.817

0.601 0.617 0.610 0.572 0.575 0.677 0.549

0.162 0.144 0.153 0.183 0.181 0.080 0.201

Experiments



When using UCF50, HF-SAR is similarly more robust than 
SVM

HF-SAR is better than SVM for 17, 17, 15 events with 
different metrics

Evaluation 
Metric SVM HF-SAR Relative 

Improvement
MinNDC 0.965 0.932 3.5%

Pmd@TER=12.5 0.857 0.764 12.2%
AP 0.069 0.098 42.0%

Average performance of SVM and SAR

Experiments



 Influence of knowledge adaptation

Experiments



 Influence of auxiliary concepts

Experiments



Summary

 An attempt on MED with few exemplars
 More generic, complicated and meaningful 

events
 Knowledge adaptation from concepts-

based videos
 Heterogeneous feature type
 Effectiveness on TRECVID MED videos



Conclusion
Focused on image and video annotation and MED
 From algorithm perspective:

 Feature selection - Solution for Q1: A better representation?
 Semi-supervised learning - Solution for Q2: With few labels?
 Multimodal approach - Solution for Q3: multiple modalities?
 Shared subspace learning - Solution for Q4: Classifier-specific 

intermediate representation?
 Transfer learning - Solution for Q5: Handling complex event 

detection with few exemplars?

 From application perspective:
 Concepts to events
 Images to videos A Progressive Process



Ongoing Work

 Harnessing different features jointly as 
symbiotic solutions

 Model the importance of negative examples
 Knowledge adaptation that leverages 

unlabeled data in multiple related domains
 Knowledge adaptation between two domains 

that have partially shared data features
 User-centric research problems


