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State of the art?
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State of the art?



How to attain better multimedia 
content understanding?



QUESTION 1:
Is it possible to get a compact feature 
representation? Would the accuracy be improved 
as a result?

Feature Selection



QUESTION 2:

Is there any way to attain a reasonable 
performance when only few labeled images and 
videos are available?

paucity of precise 
labels

paucity of precise 
labels

Semi-supervised Learning



QUESTION 3:
Can we use other modalities (e.g., text) to 
improve the analysis? Can visual information 
help text retrieval?

Multimodal Analysis



QUESTION 4:

Can we skip the explicit concept detection 
process but learn an intermediate representation 
using the available multimedia archives related 
to various concepts for complicated events?

Classifier-specific Representation



QUESTION 5:
How can we guarantee reasonable multimedia 
event detection accuracy when only few positive 
exemplars are provided?

Knowledge Adaptation



Multimedia Data
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Redundant 
Representation?

Feature 
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Events?
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Analysis
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Things and Stuff:
A Computer Vision Perspective

Some slides courtesy of Heitz & Koller, Uijlings et. al



Things vs. Stuff
Stuff: Material defined by a 
homogeneous or repetitive 
pattern of fine-scale properties, 
but has no specific or distinctive 
spatial extent or shape

Thing: An object with a 
specific size and shape



Finding Things

Context is key!



Zürich: a city and its trams 

Context

D. Gatica-Perez



Context



Disambiguation using relative locations of detected boxes

Riding Horse or Feeding Horse?

Context

Human

Horse



Riding Horse or Feeding Horse?

Context



Context



Outline

 Sliding Window
 Selective Search vs. Sliding Window
 What is Context?
 The Things and Stuff (TAS) model
 Results



Scenes, Objects, and Parts

Features

Parts

Objects

Scene

E. Sudderth, A. Torralba, W. Freeman, A. Willsky. ICCV 2005.



The statistical viewpoint
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posterior ratio likelihood ratio prior ratio

• Discriminative methods model posterior

• Generative methods model likelihood and 
prior

The statistical viewpoint



Discriminative

• Direct modeling of 

Zebra

Non-zebra

Decision
boundary
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• Model                        and 
Generative
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Three main issues

 Representation
 How to represent an object category

 Learning
 How to form the classifier, given training data

 Recognition
 How the classifier is to be used on novel data



Object Detection

 Task: Find the things
 Example: Find all the 

cars in this image
 Return a “bounding box” 

for each

 Evaluation:
 Maximize true positives
 Minimize false positives



Sliding Window Detection

 Consider every bounding box
 All shifts
 All scales
 Possibly all rotations

 Each such window gets a score:
 D(W)

 Detections: Local peaks in D(W)
 Pros:

 Covers the entire image
 Flexible to allow variety of D(W)’s

 Cons:
 Brute force – can be slow
 Only considers features in box

D = 1.5

D = -0.3



Object-based Classification

Given an image/video collection: 
Find the objects containing a specific object



Problems:
- Viewpoint changes
- Location
- Illumination conditions

Object-based Classification



Object-based Classification
Problems:
- Same functionality, different manifestations



 First intuition: First find the object, then recognize

segmentation Part-based model
(Fischler and Elschlager 1973)

Object-based Classification



Segmentation

 Segmentation traditionally aimed for unique 
partitioning

But this never resulted in the necessary accuracy for 
subsequent recognition



Part-based Classification

Fergus, Perona, Zisserman, 2003

No segmentation. Collection of spatially related local image details



Bag-of-Words

 No segmentation
 No location

Sivic et al. 2003, Csurka et al. 2004



Bag-of-Words



Bag-of-Words



Pixel-wise gradient responses

Bag-of-Words



Pixel-wise gradient responses

Descriptor Space
Bag-of-Words



Pixel-wise gradient responses

Descriptor Space
Bag-of-Words



Pixel-wise gradient responses

Descriptor Space
Bag-of-Words



Descriptor Space

Bag-of-Words



Add SIFT descriptors from many training images

Descriptor Space

Bag-of-Words



Clustering

Descriptor Space

Bag-of-Words



The clusters partition the descriptor space. Each cluster is called a “Visual Word”

Descriptor Space

Bag-of-Words



Pixel-wise gradient responses

Descriptor SpaceBag-of-Words



Pixel-wise gradient responses

Descriptor SpaceBag-of-Words



Global Representation

Pixel-wise gradient responses

Descriptor SpaceBag-of-Words
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Bag-of-Words



Bag-of-Words details

 Extreme dense sampling at every pixel
 Local patches of 16 by 16 pixels
 SIFT, Opponent SIFT, and RGB-SIFT
 Visual Vocabulary using Random Forests, 4 binary 

trees of depth 10 = 4096 visual words
 SVM with Histogram Intersection kernel









Conclusions Bag-of-Words

 Works well enough for retrieval purposes
 No segmentation
 No object location



Conclusions Bag-of-Words

 Works well enough for retrieval purposes
 No segmentation
 No object location

 What do we lose by ignoring object location?
 Which parts of the image are important for 

recognition?



The Visual Extent of an Object

 What do we lose by ignoring object location?
 Which parts of the image are important for 

recognition?

Uijlings, Smeulders, Scha, IJCV 2012



How BoW classifies images



How BoW classifies images



How BoW classifies images



How BoW classifies images



How BoW classifies images



 Bag-of-Words works really on local details, 
although details are slightly larger than 
patches

 Bag-of-Words uses details from both the 
object and its surroundings

 Individual details are not very object or 
surrounding specific

Uijlings, Smeulders, Scha, IJCV 2012

How BoW classifies images



Importance of Object Localization



Importance of Object Localization



Importance of Object Localization



Importance of Object Localization



 Global Bag-of-Words: 0.54 MAP
 Object Only: 0.68 MAP

Average Precision:

Importance of Object Localization



 Knowing the object location increases performance 
by 26%, from 0.54 to 0.68 MAP

 When object location is known, the surround adds 
very little information

Uijlings, Smeulders, Scha, IJCV 2012

Importance of Object Localization



 Knowing the object location increases performance 
by 26%, from 0.54 to 0.68 MAP

 When object location is known, the surround adds 
very little information

 Need to incorporate the notion of object location

Importance of Object Localization



Outline

 Sliding Window
 Selective Search vs. Sliding Window
 What is Context?
 The Things and Stuff (TAS) model
 Results



Localisation: Exhaustive Search

 100,000-1,000,000 locations. Imposes huge 
computational constraints on subsequent 
methods



Localisation: Segmentation

 10-100 locations but captures few objects



Localisation: Segmentation

 Sliding window: 100,000-1,000,000 locations. Imposes 
huge computational constraints on subsequent methods

 Segmentation: 10-100 locations, but captures few objects



Segmentation as Selective Search

 Rethink segmentation:
 High Recall

 Coarse locations are sufficient (boxes)

 Fast to compute



Segmentation as Selective Search

 An image is intrinsically hierarchical. A 
segmentation at a single scale cannot find all 
objects



Segmentation as Selective Search

 Use all locations from a hierarchical grouping

Object hypotheses from
all hierarchy levels

Oversegmentation
(Felzenszwalb 2004)

Hierarchical grouping
of segments



Segmentation as Selective Search

 No single segmentation strategy works 
everywhere

 We need a set of complementary segmentation 
strategies

Color cues work best Texture cues work, color fails



Segmentation as Selective Search

 Hierarchical Grouping
 Use of a variety of color spaces with 

complementary invariance properties
 Different grouping criteria: Colour, Texture, Size, 

Insideness
 2 methods:

 Fast: uses 8 different hierarchical groupings

 Quality: uses 80 different hierarchical groupings

Van de Sande, et al, ICCV 2011



Segmentation as Selective Search

MAVO: Mean Average Best Overlap
rgI is normalized R and G and intensity. H is the Hue from HSV.
C = color, T = texture, S = Size, F = Fill/Insideness
k is the parameter for the initial oversegmentation. Higher k means fewer, larger initial regions



Evaluation of Locations

 Pascal Overlap Criterion

 Correctly localised if best overlap > 50%
 Recall is the % of objects for which there is a 

location with > 50% overlap



Evaluation of Locations



Evaluation of Locations



Evaluation of Locations



Evaluation of Locations

 What does a .88 Best Overlap score mean?

Overlap 88.4% Overlap 87.9% Overlap 87.4%



Selective Search in Object Localisation

 Goal: Identify and find the location of the 
objects. An object is found if the Pascal 
Overlap (MABO) score > 50%



Selective Search in Object Localisation

Pascal VOC 2010
- Best results for 9 out of 20 object classes
- Works especially well on non-rigid object classes
- All competing methods are based on exhaustive search with HOG-features

Sande, et al. ICCV 2011



Object Localisation

 Quality of locations is close to optimal for this 
Bag-of-Words system



Conclusions Selective Search

 Results in a small yet high quality set of 
potential object locations

 Works by rethinking segmentation:
 Focus more on Recall than Precision

 Hierarchical grouping to deal with objects at multiple 
scales

 Multiple complementary strategies to deal with high 
variety in image conditions

 Enables use of more expensive features



Is Exact Localisation Optimal?



Is Exact Localisation Optimal?



Is Exact Localisation Optimal?

Parts were earlier used in “visual identification”
Learning to Locate Informative Features for Visual Identification, IJCV 2008,
A. Ferencz, E. Learned-Miller, J. Malik



Is Exact Localisation Optimal?

Parts may be more discriminative because of pose change, 
often caused by interaction between the objects



Is Exact Localisation Optimal?

For occluded objects only the non-occluded part is informative.



Is Exact Localisation Optimal?

In crowded scenes, compared to an individual object:
a collection is both more easy to find and may be more discriminative



Is Exact Localisation Optimal: NO

 Parts may be more discriminative for some 
classes

 Interacting objects may change pose, 
retaining typical appearance only for object 
parts

 Occluded objects are hard to find when 
searching for complete objects

 In crowded scenes groups are more easy to 
recognize

The Windows that Tell the Story of an Image, J.R.R. Uijlings and A.W.M. Smeulders



The Most Telling Window

 May focus on:
 Object Parts

 Complete Objects

 Object Collections

The Windows that Tell the Story of an Image, J.R.R. Uijlings and A.W.M. Smeulders.



Methodology: Object Location

 Most Dominant: 
Sliding Windows

 But yields 100.000 – 1.000.000 windows:
infeasible for powerful Bag-of-Words 
implementation

 Solution: Selective Search



Methodology: Object Location

 Selective Search which uses multiple, 
complementary, hierarchical segmentations



Methodology: Object Location

 Small set of class-independent locations
 Captures parts, objects, and collections

Example windows
generated by the
method:



Methodology: Framework

Descriptor
Extraction

Visual Word
Assignment

Use
Complete

image
Classification

Use
Complete

image

Train SVM
model

Training

Classification

Normal Bag-of-Words



Methodology: Framework

Descriptor
Extraction

Visual Word
Assignment

Selective
Search

Locations
Classification

Use
ground truth

windows

Train SVM
model

Training

Classification

Most Telling Window



Methodology: Framework

Descriptor
Extraction

Visual Word
Assignment

Selective
Search

Locations
Classification

Extra Negatives

Use
ground truth

windows

Train SVM
model

Training

Classification

Most Telling Window

Retraining: e.g. Laptev 2009, Felzenszwalb et al. 2010



Localisation vs Most Telling Window

Most Telling WindowLocalisation

No negative examples from positive images!



 Large difference in motivation:
 Parts

 Complete objects

 Collections of objects

 Subtle difference in training windows
 Significant difference in final results
 (Of course, it would be better to also obtain new 

positive examples in retraining loop)

Localisation vs Most Telling Window



Implementation details
 Pixel-wise sampling
 (Colour) SIFT descriptors (Lowe04, Sande2010)
 K-means visual vocabulary
 Hard assignment.
 Store “Visual Word Images”
 Spatial Pyramid (Lazebnik06). BoW:1x1,2x2,1x3. 

MTW:2x2/4x4
 Bag-of-Words GPU acceleration (Sande2011)
 Selective Search
 Support Vector Machine with Histogram Intersection kernel. 

Fast additive classification (Maji 2009)



Results

Comparable with top scores reported in e.g. Chatfield et al. BMVC 2011
- We: Pixel-wise sampling, 5 Colour SIFT (Sande 2010), kmeans vocabulary 4096
- Chatfield et al.: dense sampling, grey-SIFT only, Fisher/Sparse coding



Results

Significant improvement by using not the whole image but its Most Telling Window

Context!



Results

Most Telling Window consistently outperforms Exact Localisation (using same basic framework)



Results

Scores Detection Task: Felzenszwalb: 0.253 MTW: 0.317, Our localisation: 0.336,
Discrepancy in results on detection and classification suggests that exact localisation tends to
hallucinate objects that are not there while Most Telling Window finds object approximately.



Results

Final combination by cross-validation using weighted addition of classifier output:
- 2 parts Most Telling Window SP 4x4     - 2 parts Localisation (Felzenszwalb 2010)
- 1 part Most Telling Window SP 2x2           - 1 part global Bag-of-Words

3 variations of global Bag-of-Words and our exact localisation were discarded. Location is crucial!



Visualising the Most Telling 
Window of top‐ranked images

High-ranked
Positives

High-ranked
Negatives

Aeroplane



Visualising the Most Telling 
Window of top‐ranked images

High-ranked
Positives

High-ranked
Negatives

Bicycle



Visualising the Most Telling 
Window of top‐ranked images

High-ranked
Positives

High-ranked
Negatives

Cat



Visualising the Most Telling 
Window of top‐ranked images

High-ranked
Positives

High-ranked
Negatives

Cow



Visualising the Most Telling 
Window of top‐ranked images

High-ranked
Positives

High-ranked
Negatives

Motorcycle



Visualising the Most Telling 
Window of top‐ranked images

High-ranked
Positives

High-ranked
Negatives

Person



Conclusions Most Telling Window
 The Most Telling Window is the window that is the most 

discriminative for classifying the presence of an object: can 
be (1) object part; (2) whole object; (3) object collection

 First time that window within the image yields better results 
by itself than whole image?

 The Most Telling Window works better than exact 
localisation

 Suboptimal positive windows suggest room for 
improvement

 Selective Search enables powerful, local Bag-of-Words
 Class independent parts, wholes, and collections



Outline

 Sliding Window
 Selective Search vs. Sliding Window
 What is Context?
 The Things and Stuff (TAS) model
 Results



Satellite Detection Example

D(W) = 0.8

D(W) = 0.8



Prior:
Detector Only

Posterior:
TAS Model

Region Labels

Detections in Context

Task: Identify all cars in 
the satellite image

Idea: The surrounding 
context adds info to the 
local window detector 

+ =
Houses

Road



Error Analysis
Typically…

We need to look outside 
the bounding box!

False Positives are
OUT OF CONTEXT

True Positives are
IN CONTEXT



Types of Context

 Scene-Thing:

 Stuff-Stuff:

gist car “likely”

keyboard “unlikely”

 Thing-Thing:

[ Torralba et al., LNCS 2005 ]

[ Gould et al.,
IJCV 2008 ]

[ Rabinovich et 
al., ICCV 2007 ]



Types of Context

 Stuff-Thing:
 Based on spatial 

relationships

 Intuition:

Trees = no cars

“Cars drive on roads”

“Cows graze on grass”

“Boats sail on water”
Goal: Unsupervised



Outline

 Selective Search vs. Sliding Window
 What is Context?
 The Things and Stuff (TAS) model
 Results



Things
 Detection “candidates”

 Low detector threshold -> “over-detect”
 Each candidate has a detector score



Things

 Candidate detections
 Image Window Wi + Score

 Boolean random variable Ti
 Presence/absence of the target 

class in the window i

 Thing model: conditional 
prob. from window features 
to prob. that window 
contains the object

Ti

Image
Window

Wi

))(exp(1
1)(

WD
WTP i 






Stuff
 Coherent image regions

 Segment image into regions: coarse 
“superpixels”

 For each region extract color & 
texture feature vector Fj in Rn

 Generative model: each region has 
a hidden class label Sj in {1…C}

 Stuff model
 Naïve Bayes Sj

Fj

 jjjjj SFPSPFSP )(),( 

   ssjj sSF  ,~ 



Relationships

 Descriptive Relations
 “Near”, “Above”, 

“In front of”, etc.

 Choose set R = {r1…rK}
 Rijk=1: Detection i and 

region j have relation k
 Relationship model

S72 = Trees

T1

Rijk

Ti Sj R1,10,in=1



The TAS Model

RijkTi Sj

Fj

Image
Window

Wi

Wi:   Window

Ti:    Object Presence

Sj:    Region Label

Fj:    Region Features

Rijk:  Relationship

N

J

K

Supervised
in Training Set

Always
Observed

Always
Hidden



Unrolled Model

T1

S1

S2

S3

S4

S5

T2

T3

R2,1,above = 0

R3,1,left = 1

R1,3,near = 0

R3,3,in = 1

R1,1,left = 1

Candidate
Windows

Image
Regions



Learning the Parameters

 Assume we know R
 Sj is hidden

 Everything else observed
 Expectation-Maximization

 “Contextual clustering”
 Parameters are readily 

interpretable

RijkTi Sj

Fj

Image
Window

Wi

N

J

K

Supervised
in Training Set

Always
Observed

Always
Hidden



Learned Satellite Clusters



Which Relationships to Use?

 Rijk = spatial relationship 
between candidate i and region j

Rij1 = candidate in region
Rij2 = candidate closer than 2 bounding boxes (BBs) to region
Rij3 = candidate closer than 4 BBs to region
Rij4 = candidate farther than 8 BBs from region
Rij5 = candidate 2BBs left of region
Rij6 = candidate 2BBs right of region
Rij7 = candidate 2BBs below region
Rij8 = candidate more than 2 and less than 4 BBs from region
…
RijK = candidate near region boundary

How do we  avoid overfitting?



Inference
 So far, we assumed a known set of relationships
 But, different data may require different types of 

contextual relationships => learn which one to use 
 Define a large set C of “candidate relationships” (i.e., all 

possible relationships to be included) 
 Search through C for the subset of “active” relationships R 

that best facilitates the use of context
 If a relationship is “inactive” => remove the edges from 

all Ti and Sj to the Rijk variables for this particular k. 
 With this view of “activating” relationships by including 

the edges in the Bayesian Network, we can formulate our 
search for R as a structure learning problem



Learning the Relationships

 Intuition
 “Detached” Rijk = inactive 

relationship
 Structural EM iterates:

 Learn parameters
 Decide which edge to toggle

 Evaluate with l(T|F,W,R)
 Requires inference
 Better results than using 

standard E[l(T,S,F,W,R)]

Rij1

Ti Sj

Fj

Rij2 RijK



Learning the Relationships



Inference

 Goal: find the probability that 
each window contains the object

 This expression involves a summation 
over an exponential set of values for the S     
vector of variables
 solve the inference problem approximately using a 

Gibbs sampling MCMC method (Geman&Geman, 1987) 



Inference

 Block Gibbs Sampling
 Initial assignment to the variables
 in each Gibbs iteration resample all 

of the S’s and then resample all the 
T’s according to the following two 
probabilities:



Outline

 Selective Search vs. Sliding Window
 What is Context?
 The Things and Stuff (TAS) model
 Results



Features: Edge fragments

Weak detector = Match of 
edge chain(s) from training 
image to edgemap of test 
image

Opelt, Pinz, Zisserman, 
ECCV 2006

BOOSTING!



Base Detector - HOG

[ Dalal & Triggs, CVPR, 2006 ] HOG Detector:

Feature Vector X SVM Classifier



Results - Satellite

Prior:
Detector Only

Posterior:
Detections

Posterior:
Region Labels



Results - Satellite

40 80 120 1600

0.2

0.4

0.6

0.8

1

False Positives Per Image (fppi)

R
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l R
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e

Base Detector
TAS Model

~10% improvement in recall at 40 fppi



Base Detector Error Analysis

Cows



Discovered Context - Bicycles

Bicycles

Cluster #3



TAS Results – Bicycles

 Examples

 Discover “true positives”

 Remove “false positives”
BIKE

? ?
?



Results – VOC 2005



Results – VOC 2006





Conclusions

 Detectors can benefit from context
 The TAS model captures

an important type of context
 Can improve any sliding window/selective 

search detector using TAS
 The TAS model can be interpreted and 

matches our intuitions
 We can learn which relationships to use 



Image Low-level 
vision features

(edges, SIFT, HOG, etc.)

Object detection
/ classification

Input data
(pixels)

Learning
Algorithm

(e.g., SVM)

feature 
representation 
(hand-crafted)

Features are not learned

Traditional Recognition Approach



SIFT Spin image

HoG
and many others:

Textons

Computer vision features

SURF, MSER, LBP, Color-SIFT, Color histogram, GLOH, …..



Motivation
 Features are key to recent progress in recognition
 Multitude of hand-designed features currently in use
 Where next? Better classifiers? Building better 

features?

Felzenszwalb, Girshick,
McAllester and Ramanan, PAMI 2007

Yan & Huang
(Winner of PASCAL’10 classification competition)

Slide: R. Fergus



What Limits Current Performance?

• Also removal of part deformations has small (<2%) effect.
– Are “Deformable Parts” necessary in the Deformable Parts Model?

Divvala, Hebert, Efros, ECCV 2012

• Replace each part with humans (Amazon Turk):

Parikh & Zitnick, 
CVPR’10

Slide: R. Fergus



• Mid-level cues

Mid-Level Representations

“Tokens” from Vision by D.Marr:

• Object parts:

Continuation Parallelism Junctions Corners

• Difficult to hand-engineer What about learning them?
Slide: R. Fergus



Learning Feature Hierarchy
• Learn hierarchy

• All the way from pixels  classifier

• One layer extracts features from output of previous layer

Layer 1 Layer 2 Layer 3 Simple
Classifier

Slide: R. Fergus

Image/Video 
Pixels

• Train all layers jointly



1. Learn useful higher‐level features from images

2. Fill in representation gap in recognition

Feature representation

Input data

1st layer 
“Edges”

2nd layer 
“Object parts”

3rd layer 
“Objects”

Pixels

Lee et al., ICML 2009; 
CACM 2011

Learning Feature Hierarchy



• Better performance

• Other domains (unclear how to hand engineer):
– Kinect
– Video
– Multi spectral

• Feature computation time
– Dozens of features now regularly used [e.g., MKL]
– Getting prohibitive for large datasets (10’s sec /image)

Slide: R. Fergus

Learning Feature Hierarchy



Approaches to Learning Features

• Supervised Learning
– End‐to‐end learning of deep architectures (e.g., deep
neural networks) with back‐propagation

– Works well when the amounts of labels is large
– Structure of the model is important (e.g.
convolutional structure)

• Unsupervised Learning
– Learn statistical structure or dependencies of the data 
from unlabeled data

– Layer‐wise training
– Useful when the amount of labels is not large



Convolutional Neural Networks

• LeCun et al. 1989

• Neural network with 
specialized connectivity 
structure

Slide: R. Fergus



Convolutional Neural Networks
• Feed‐forward:

– Convolve input
– Non‐linearity (rectified linear)
– Pooling (local max)

• Supervised
• Train convolutional filters by
back‐propagating classification error

LeCun et al. 1998

Input Image

Convolution
(Learned)

Non- linearity

Pooling

Feature maps

Slide: R. Fergus



Components of Each Layer

Pixels /
Features

Filter with
Dictionary
(convolutional
or tiled)

Spatial/Feature 
(Sum or Max)

Normalization 
between 
feature 

responses

Output
Features

+ Non-linearity

[Optional]

Slide: R. Fergus



Filtering
Convolutional
– Dependencies are local
– Translation equivariance
– Tied filter weights (few params)
– Stride 1,2,… (faster, less mem.)

.

.

.

Slide: R. Fergus
Input Feature Map



Non-Linearity

• Non-linearity
– Per-element (independent)
– Tanh
– Sigmoid: 1/(1+exp(-x))
– Rectified linear

• Simplifies backprop
• Makes learning faster
• Avoids saturation issues

• Preferred option

Slide: R. Fergus



Pooling
• Spatial Pooling

– Non‐overlapping / overlapping regions
– Sum or max
– Boureau et al. ICML’10 for theoretical analysis

Max

Sum

Slide: R. Fergus



Normalization
• Contrast normalization (across feature maps)

– Local mean = 0, local std. = 1, “Local” 7x7 Gaussian
– Equalizes the features maps

Feature Maps
Feature Maps

After Contrast Normalization

Slide: R. Fergus



Krizhevsky et al. [NIPS 2012]

• 7 hidden layers, 650,000 neurons, 60,000,000 parameters
• Trained on 2 GPUs for a week

• Same model as LeCun’98 but:
- Bigger model (8 layers)
- More data (106 vs 103 images)
- GPU implementation (50x speedup over CPU)
- Better regularization (DropOut)



Multimedia Data

Module 1
Noisy & 

Redundant 
Representation?

Feature 
Selection

Module 2 Module 4

Few Labels?
Complicated 

Events?

Semi-
supervised 
Learning

Classifier-
specific 

RepresentationAuxiliary 
Multimedia 

Data

A Generic Framework

Module 5
Complicated 

Events & Few 
Labels?

Knowledge 
Adaptation

Module 3
Text & Visual 
Information?

Multimodal 
Analysis

feature   extraction



Outline

 Feature Selection (Q1)
 Semi-supervised Feature Analysis (Q2)
 Visual Info Helps Text Retrieval (Q3)
 Classifier-specific Representation (Q4)
 Knowledge Adaptation for MED (Q5)



QUESTION 1:
Is it possible to get a compact feature 
representation? Would the accuracy be improved 
as a result?

Feature Selection



Motivation

 Images are represented by various features
 Feature selection eliminates noise and 

redundancy 
 Feature selection can improve both 

classification accuracy and computational 
efficiency

 Web images are usually multi-labeled

Z. Ma, F. Nie, Y. Yang, J. Uijlings and N. Sebe: “Web Image Annotation via Subspace-
Sparsity Collaborated Feature Selection". IEEE Transactions on Multimedia, 14(4): 
1021-1030, 2012.



Related Work

 Feature Selection
 traditional approach: individual evaluation of 

features, e.g., Duda et al. [1]
 Problem: low efficiency, does not consider feature 

correlation
 sparse feature selection:  joint evaluation, e.g., 

Yang et al. [2] 
 Problem: does not consider concept correlation

[1] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification (2nd ed.). Wiley-
Interscience, New York, USA, 2001.
[2] Y. Yang, H. T. Shen, Z. Ma, Z. Huang, and X. Zhou. L21-norm regularized 
discriminative feature selection for unsupervised learning. In IJCAI, 2011.



Methodology

 Sparse model

 Shared subspace learning 

Advantages:

 Batch-mode: evaluates features jointly across all data 

points

 considers the correlation between different concept 

labels



Formulation

 Feature Selection

 Joint feature selection with sparsity

 - norm regularized model [3]

loss function guarantees the optimized W to be sparse, i.e., 
some (many) of its rows shrink to zero.  W can 
be viewed as the combination coefficients for 
the most discriminative features 

[3] A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature learning. In NIPS, 2007

l2,1



Formulation (Cont’d)

 Shared subspace learning [4]

 Objective Function:

ground truth labelstraining data

weights

min
W ,V ,P,Q

loss(W T X,Y ) (V ,P)

s.t.   QTQ  I ,   W V QP

shared subspace

[4] R. Ando, and T. Zhang. A framework for learning predictive structures from 
multiple tasks and unlabeled data. JMLR, 2005. 

controls the complexity

regulates the information to each specific label

assumes multi-label images share 
common attributes, e.g.,. an image 
labeled “parade", “people" and 
“street" share “people" with another 
one labeled “party“ and “people”



Experiments

 Datasets:
 MSRA-MM 2.0: web images, diverse, multi-labeled
 NUS-WIDE: Flickr images, diverse, multi-labeled, large-

scale

 Features: Color Correlogram
Edge Direction Histogram
Wavelet Texture

MSRA-MM 2.0 NUS-WIDE

Class Number 100 81

Training Set Size 10,000 10,000

Testing Set Size 32,266 199,347



Experiments (Cont’d)

 Comparison algorithms:
 Sub-Feature Uncovering with Sparsity (SFUS)
 All Features
 Fisher Score
 Sparse Multinomial Logistic Regression via Bayesian L1 

Regularisation (SBMLR), NIPS
 Spectral feature selection (SPEC), ICML
 Group Lasso with Logistic Regression (GLRR), ACM MM
 Feature Selection via Joint l2,1 –Norms Minimization 

(FSNM), NIPS



 Results comparison – 10c (class number) training data
MAP/MicroAUC/MacroAUC ± Standard Deviation on MSRA dataset

All Features Fisher Score SBLMR SPEC FSNM GLRR SFUS

0.062±0.001 0.060±0.002 0.056±0.002 0.058±0.001 0.061±0.002 0.060±0.001 0.063±0.001

0.840±0.001 0.861±0.005 0.869±0.003 0.852±0.002 0.875±0.002 0.846±0.001 0.878±0.002

0.655±0.006 0.655±0.003 0.643±0.006 0.650±0.004 0.658±0.006 0.653±0.005 0.662±0.005

MAP/MicroAUC/MacroAUC ± Standard Deviation on NUS dataset

All Features Fisher Score SBLMR SPEC FSNM GLRR SFUS

0.081±0.002 0.080±0.002 0.072±0.008 0.078±0.002 0.092±0.001 0.082±0.002 0.094±0.003

0.842±0.003 0.851±0.003 0.871±0.005 0.847±0.003 0.869±0.002 0.853±0.002 0.877±0.002

0.726±0.003 0.728±0.004 0.718±0.028 0.722±0.003 0.753±0.002 0.732±0.003 0.756±0.003

Experiments (Cont’d)



 Results comparison – 20c (class number) training data
MAP/MicroAUC/MacroAUC ± Standard Deviation on MSRA dataset

MAP/MicroAUC/MacroAUC ± Standard Deviation on NUS dataset

Experiments (Cont’d)

All Features Fisher Score SBLMR SPEC FSNM GLRR SFUS

0.067±0.004 0.066±0.002 0.059±0.001 0.066±0.001 0.068±0.001 0.067±0.001 0.070±0.001

0.859±0.011 0.876±0.004 0.883±0.004 0.868±0.001 0.888±0.002 0.866±0.002 0.888±0.002

0.676±0.013 0.680±0.004 0.666±0.004 0.679±0.002 0.687±0.002 0.680±0.002 0.690±0.002

All Features Fisher Score SBLMR SPEC FSNM GLRR SFUS

0.099±0.001 0.098±0.004 0.073±0.007 0.094±0.001 0.105±0.003 0.105±0.002 0.108±0.002

0.874±0.001 0.880±0.005 0.887±0.006 0.875±0.001 0.888±0.003 0.885±0.003 0.891±0.003

0.767±0.001 0.770±0.005 0.733±0.024 0.763±0.001 0.785±0.004 0.780±0.001 0.789±0.003



 Influence of selected features 

Experiments (Cont’d)



 Convergence

Experiments (Cont’d)



Summary

 Integration of shared subspace learning and joint 
feature selection with sparsity 

 Evaluating feature importance jointly
 Consideration of the correlation between labels
 Promising results on large-scale web image sets

Z. Ma, F. Nie, Y. Yang, J. Uijlings and N. Sebe: “Web Image Annotation via Subspace-
Sparsity Collaborated Feature Selection". IEEE Transactions on Multimedia, 14(4): 
1021-1030, 2012.



Outline

 Feature Selection (Q1)
 Semi-supervised Feature Analysis (Q2)
 Visual Info Helps Text Retrieval (Q3)
 Classifier-specific Representation (Q4)
 Knowledge Adaptation for MED (Q5)



QUESTION 2:

Is there any way to attain a reasonable 
performance when only few labeled images and 
videos are available?

paucity of precise 
labels

paucity of precise 
labels

Semi-supervised Learning



Motivation

 Multimedia data are represented by various 
features

 For classification purpose, some noisy and 
irrelevant features may be not useful

 Semi-supervised learning uses the limited 
available labels in an effective way

 It is natural to integrate semi-supervised learning 
with feature selection

Z. Ma, F. Nie, Y. Yang, J. Uijlings, N. Sebe and A. G. Hauptmann: “Discriminating Joint 
Feature Analysis for Multimedia Content Understanding". IEEE Transactions on Multimedia, 
14(6): 1662-1672, 2012.



Problems

 Semi-supervised feature selection

 traditional method: low efficiency, does not consider 

feature correlation

 Sparse feature selection

 is generally realized through supervised learning 

Supervised 
learning
Requires fully 
labeled training 
data



Methodology

 Efficient feature analysis

 Sparse feature selection 

 Semi-supervised via graph Laplacian

Advantages:

 Batch-mode: evaluating features jointly across all 
data points

 Semi-supervised: not so expensive as supervised 
learning



F
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Formulation

 Feature Selection
 Joint feature selection with sparsity
 - norm regularized model [3]

 Incorporate semi-supervised learning
 Use graph Laplacian 

l2,1



 Semi-supervised learning
 Graph Laplacian construction: L = D – A

 Objective function: use manifold regularization

 Define a predicted label matrix F for all training data
 smooth on Yl and the manifold structure

ground-truth labels;bias termlabeled training data

Formulation



 Objective Function:

 We are able to get F, W, and b simultaneously
 The optimal W obtained can be utilized directly for 

classification as W does feature selection 

argmin
F ,W ,b

Tr(FT LF)Tr (F Y )T U(F Y )    XTW 1nbT  F
F

2
 W 2,1

predicted labels
ground truth labels training data;

sparse coefficients
decision matrix

loss function

Formulation



Experiments

 Datasets
 Image annotation:

 Corel-5K: 50 classes, 5000 images
 MSRA-MM 2.0: 81 classes, 42266 images
 NUS-WIDE: 100 classes, 209347 images

 Video concept recognition:
 Kodak: 22 concepts, 3590 video frames
 CareMedia: 5 concepts, 3913 video sequences
 3D motion data analysis
 HumanEva: 10 classes, 10000 frames



Experiments (Cont’d)

 Comparison algorithms:
 Structural Feature Selection with Sparsity (SFSS)
 Fisher Score (FISHER)
 Sparse Multinomial Logistic Regression via Bayesian L1 

Regularisation (SBMLR), NIPS
 Group Lasso with Logistic Regression (GLRR), ACM MM
 Feature Selection via Joint l2,1 –Norms Minimization 

(FSNM), NIPS
 Semi-supervised Feature Selection via Spectral Analysis 

(sSelect), ICDM
 Locality sensitive semi-supervised feature selection 

(LSDF), Nerocomputing



 Comparison on image annotation

Experiments (Cont’d)



 Comparison on video concept recognition

Experiments (Cont’d)



 Comparison on 3D motion data analysis

Experiments (Cont’d)



 Comparison with semi-supervised algorithms

Experiments (Cont’d)



 Influence of unlabeled data

Experiments (Cont’d)



 Convergence

Experiments (Cont’d)



Summary

 Harnessing discriminating features closely related to the 
concept labels

 Cost saving
 Boosting performance with the usage of unlabeled data
 Analysis of multimedia data structure helps multimedia 

content understanding
 Clear advantages when few training data are labeled
 Applicable to a variety of applications

Z. Ma, F. Nie, Y. Yang, J. Uijlings, N. Sebe and A. G. Hauptmann: “Discriminating Joint 
Feature Analysis for Multimedia Content Understanding". IEEE Transactions on Multimedia, 
14(6): 1662-1672, 2012.



Outline
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 Semi-supervised Feature Analysis (Q2)
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QUESTION 3:
Can we use other modalities (e.g., text) to 
improve the analysis? Can visual information 
help text retrieval?

Multimodal Analysis



Motivation

 Text-analysis used for vision
[Barnard ICCV 2001]
[Berg ECCV 2010]

E. Bruni, J. Uijlings, M. Baroni, N. Sebe, Distributional semantics with eyes: Using image 
analysis to improve computational representations of word meaning. ACM Multimedia 2012



Motivation

 Text-analysis used for vision

 Multimodal analysis

[Rasiwasia ACM MM 2010]
[Vreeswijk ACM MM 2011]



 Text-analysis used for vision

 Multimodal analysis

 Vision-analysis used for text

?

this research

Motivation



Distributional Semantics

 What is the semantic relatedness between 
two words?

 Applications:
● Query expansion

● Textual advertising

● Information extraction

● Word sense disambiguation



Distributional Semantics

 Distributional Hypothesis:
Word-meaning can be derived from context
[Harris, Charles and Miller, Firth, Wittgenstein, …]

[McDonald & Ramscar 2001]
[Landauer Psych. Rev. 1997]
[Lowe 2001]
[Turney JAIR 2010]
[Baroni 2010]
[Sahlgren 2006]

text images

this research

He filled the wampimuk, passed it
around and we all drunk some

We found a little, hairy wampimuk
sleeping behind the tree



Distributional Semantics

 Distributional Hypothesis:
Word-meaning can be derived from context
[Harris, Charles and Miller, Firth, Wittgenstein, …]

[McDonald & Ramscar 2001]
[Landauer Psych. Rev. 1997]
[Lowe 2001]
[Turney JAIR 2010]
[Baroni 2010]
[Sahlgren 2006]

text images

Few people write that bananas are yellow



Research Questions

 Text vs images: Which semantics are 
captured? 

 Do images improve upon text-only 
semantics?

 How does the distributional hypothesis work 
for images?



Distributional semantics from text



Semantic similarity measured in cosine of angle

Distributional semantics from text



Distributional semantics from images
Bag-of-Words

Global Representation

Pixel-wise gradient responses

Descriptor Space



Instances

moon

Distributional semantics from images



Multimodal distributional semantics

 Concatenation

But: PCA-based smoothing is necessary



Semantics: text vs images
● BLESS dataset [Baroni 2011]

● 200 pivot words

● Human collected relata words in 8 categories
– Coordinate: alligator - lizard

– Hypernym (is-a):  alligator - reptile

– Meronym (part): alligator - teeth

– Attribute: alligator - aquatic

– Event (verb): alligator - swim

– Random noun: alligator - trombone

– Random adjectives: alligator - electronic

– Random verbs: alligator – conclude

● average 7-33 relata per category per pivot



Semantics: text vs images

text images



Semantics: text vs images

text images



Semantics: text vs images

Attributes



1

2

[1] http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/
[2] http://clic.cimec.unitn.it/~elia.bruni/MEN

Improving Distributional Semantics with Eyes

 Datasets with human semantic judgements
● WordSim (WS) [1]:  353 word pairs
● MEN [2]                : 3000 word pairs



Improving Distributional Semantics with Eyes

Spearman correlations with human semantics:



The illustrated distributional hypothesis

The meaning of a word can be derived from context



The illustrated distributional hypothesis

The meaning of a word can be derived from context



surround

object

The illustrated distributional hypothesis

The meaning of a word can be derived from context

Pascal VOC 2007 (20 object classes, 5000 test images)

1) Ground truth object locations
2) Selective Search Localisation



Spearman correlations with human semantic judgments on Pascal VOC 2007

The illustrated distributional hypothesis



Human correlations Object appearance correlations
(automatic localization)

The illustrated distributional hypothesis



Surround appearance correlations
(automatic localization)

The illustrated distributional hypothesis

Human correlations



Summary

 Image and text have complementary semantic 
information

 Image features improve text-based task

 Distributional hypothesis for images works mostly 
on context



Outline
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QUESTION 4:

Can we skip the explicit concept detection 
process but learn an intermediate representation 
using the available multimedia archives related 
to various concepts for complicated events?

Classifier-specific Representation



Multimedia Event Detection

Detect the occurrence of an event within a 
video clip based on an Event Kit, which 
contains some text description and some 
example videos

National Institute of Standards and Technology



the abstract or general idea 
inferred from specific 

instances; usually describable 
by a single shot

the abstract or general idea 
inferred from specific 

instances; usually describable 
by a single shot

an observable occurrence that 
interests users; is dynamic and 

has semantic richness; lives 
within a longer video sequence 

an observable occurrence that 
interests users; is dynamic and 

has semantic richness; lives 
within a longer video sequence 



Annotation vs Detection

Associate multimedia data with 
one or multiple semantic labels 

(tags)

Associate multimedia data with 
one or multiple semantic labels 

(tags)

Detect the existence of 
concept/event through pre-

trained detectors

Detect the existence of 
concept/event through pre-

trained detectors

234/33



Progress on Video Content Detection

 TREC Video Retrieval Evaluation (TRECVID)
Sports            News         Repetitive pattern   Surveillance      

 “Event detection in Internet multimedia (MED)” 
2010: more complicated events, e.g., Assembling 
a shelter

235/33



Difficulty of MED
Video 1

Video 2



Inspiration

 Learning to refine multimedia representation
 Limit: the refinement and the classifier training are 

independent

 Concepts-based representation
 Limit: heavily dependent on concept detectors

 Available multimedia archives (concepts & 

events)



Methodology

 Learn an intermediate representation of videos by 
exploiting the target videos and external video 
archives together

 Integrate representation inference and classifier 
training into a joint framework

 Merits:
 The optimization of classifier is event based 
 No need for pre-trained concept detectors

Z. Ma, Y. Yang, N. Sebe, K. Zheng, A. G. Hauptmann: “Multimedia Event Detection Using
a Classifier-Specific Intermediate Representation“, IEEE Transactions on Multimedia,
15(7):1628-1637, 2013



 Given a standard concept-based representation
 Use m annotated external videos                       from c 

classes to pre-train c classifiers            (one for each 
intermediate concept, e.g., fish or boat for “landing a fish”)

 For each training or testing video                   the 
classifiers           are applied to detect the intermediate 
concepts

 Problem:            and f are trained independently

Traditional approach

loss function
label indicating video xi is 
positive/negative example

regularizer

multimedia 
event detector



Formulation
 Joint learning of classifier and representation with 

external videos
 exploit the shared components
 assume that external-based videos and concept-based videos 

have a common intermediate representation

: target & external videos
: labels
: intermediate representation

- avoid arbitrary scaling
- preserve information



Experiments
 Datasets

 Target videos: TRECVID MED 2011 (15 events) 
 External videos: TRECVID MED 2011 development set 

(3 events)

 External videos: TRECVID 2011 semantic indexing 
task development set
 concepts with few positive examples are 

removed
 65 concepts related to human, environment and 

objects
 Features: SIFT & CSIFT & MoSIFT



Events Visualization

Making a cake                        Batting a run                        Assembling a shelter



Attempting a board trick

Feeding an animal

Landing a fish Wedding ceremony

Working on a woodworking project

Events Visualization



Changing a vehicle tire

Getting a vehicle unstuck Grooming an animal

Flash mob gathering

Birthday party

Events Visualization



Parade

Parkour Repairing an appliance

Working on a sewing project

Making a sandwich

Events Visualization



 Comparison algorithms:
 Semantic Analysis via Intermediate Representation 

(SAIR)
 AdaBoost
 TaylorBoost, CVPR
 SVM
 LDA
 Semantic Concept Representation (SCR), ECCV

Experiments



MED performance comparison (MinNDC/AP)
Event AdaBoost TaylorBoost SVM LDA SCR SAIR

Attempting a board trick
1.218 0.995 0.826 0.998 0.742 0.775

0.086 0.094 0.225 0.131 0.274 0.248

Feeding an animal
1.343 1.001 0.963 1.001 0.981 0.964

0.037 0.043 0.087 0.045 0.079 0.089

Landing a fish
1.119 0.932 0.665 0.938 0.704 0.626

0.065 0.097 0.260 0.103 0.234 0.281

Wedding ceremony
1.015 1.001 0.466 1.001 0.582 0.441

0.084 0.067 0.483 0.073 0.322 0.493

Working on a woodworking
project

1.203 1.001 0.726 1.001 0.940 0.711

0.055 0.046 0.294 0.096 0.091 0.283

Experiments



Event AdaBoost TaylorBoost SVM LDA SCR SAIR

Birthday party
1.211 1.001 0.885 1.001 0.939 0.882

0.030 0.019 0.079 0.021 0.051 0.076

Changing a vehicle tire
1.187 1.001 0.670 1.001 0.862 0.636

0.006 0.006 0.023 0.006 0.013 0.030

Flash mob gathering
1.139 1.001 0.629 1.001 0.509 0.568

0.050 0.042 0.198 0.059 0.291 0.228

Getting a vehicle unstuck
1.031 0.902 0.802 0.970 0.586 0.711

0.019 0.027 0.051 0.018 0.107 0.083

Grooming an animal
1.317 1.001 0.856 0.925 0.814 0.856

0.006 0.013 0.046 0.025 0.056 0.047

MED performance comparison (MinNDC/AP)

Experiments



Event AdaBoost TaylorBoost SVM LDA SCR SAIR

Making a sandwich
1.355 1.001 0.821 1.001 0.843 0.858

0.008 0.009 0.034 0.010 0.029 0.030

Parade
1.091 0.991 0.654 1.001 0.712 0.632

0.035 0.028 0.093 0.019 0.083 0.108

Parkour
1.156 0.955 0.570 1.001 0.566 0.449

0.014 0.005 0.047 0.009 0.050 0.055

Repairing an appliance
0.971 1.001 0.550 0.822 0.664 0.508

0.027 0.018 0.102 0.029 0.056 0.109

Working on a sewing project
1.188 1.001 0.706 0.974 0.833 0.612

0.012 0.008 0.037 0.016 0.027 0.054

Average
1.163 0.986 0.719 0.976 0.752 0.682

0.035 0.035 0.137 0.044 0.118 0.148

MED performance comparison (MinNDC/AP)

Experiments



Performance comparison between using 30 and 65 external 
concepts (MinNDC/AP)

Event SCR (30C) SCR (65C) SAIR (30C) SAIR (65C)

Attempting a board trick
0.811 0.742 0.764 0.775

0.215 0.274 0.246 0.248

Feeding an animal
0.976 0.981 0.961 0.964

0.071 0.079 0.091 0.089

Landing a fish
0.722 0.704 0.625 0.626

0.214 0.234 0.286 0.281

Experiments



Convergence

Experiments



Summary

 The intermediate representation is tightly 
coupled with the classifier

 Mutual benefit is attained
 External videos provide extra cues
 Promising results on TRECVID MED videos

Z. Ma, Y. Yang, N. Sebe, K. Zheng, A. G. Hauptmann: “Multimedia Event Detection Using
a Classifier-Specific Intermediate Representation“, IEEE Transactions on Multimedia,
15(7):1628-1637, 2013
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QUESTION 5:
How can we guarantee reasonable multimedia 
event detection accuracy when only few positive 
exemplars are provided?

Knowledge Adaptation



Inspiration

 The information from few positive examples is 

limited

 Borrow strength from other multimedia resources

 Concepts-based videos are used as auxiliary 

resource

255/33



A Noticeable Difference

 No requirement for the consistency between 
the auxiliary and target domains in feature 
type

 Benefits:
 Flexible with the situation that data collection 

platforms change or augment their capabilities 



landing a fish
sparse 
model



 Map the homogeneous features of the auxiliary and 
target videos (i.e., Modality A) into another space by a 
nonlinear mapping

 The video concept classifier and the video event detector 
obtained from the homogeneous features have common 
components which contain irrelevance and noise: 
remove by joint optimization

 Another event detector of MED videos is trained based 
on Modality B

 Integrate the two event detectors for optimization after 
which the decision values from both are fused for the 
final prediction

Methodology



Target Testing VideosAuxiliary Concept-based Videos Target Training Videos

Event 
detector A

Concept classifier

Shared 
components 

mining

Minimizing 
irrelevance 
and noise

Event 
detector AKnowledge Adaptation 

Prediction 
consistency

Final decision values

Event 
detector AB

feature       extractionfeature       extraction

Modality A Modality BModality A

nonlinear    mapping

Representation A

Representation A

Representation ABAuxiliary 
concept labels

nonlinear mapping

Training 
data labels

feature       extraction
Modality B Modality A

Representation AB

nonlinear mapping

Representation A

Decision 
values AB

Decision 
values A

Framework

Z. Ma, Y. Yang, N. Sebe and A. G. Hauptmann: “Knowledge Adaptation with 
Partially Shared Features for Event Detection Using Few Exemplars". IEEE
Transactions on Pattern Analysis and Machine Intelligence, 36(9):1789-1802, 2014



1. Associate the low-level representation and high-level 
semantic concepts 

2. Do the same for the auxiliary videos

3. The predicted labels in modalities A and B are consistent

event detector (modality A)

Objective function (1)

target training 
videos

auxiliary videos event detector

event detector (modality B)



Objective function (2)

Target Training 
VideosAuxiliary Concept-

based Videos

avoids 
overfitting



Experiments
 Datasets:

 TRECVID MED 2010 
 TRECVID MED 2011 development set

 TRECVID 2012 semantic indexing task dev. set
 auxiliary videos 
 concepts with few positive examples are removed
 65 concepts related to human, environment and objects
 3244 video frames

 UCF50
 auxiliary videos 
 50 actions
 6681 video clips

9746 video clips



 Features
 Overlapping: SIFT + CSIFT (SIN12 as auxiliary data)

STIP (UCF50 as auxiliary data)
 Different: MFCC

 Setting
 10 positive example

263/33

Experiments



 Comparison algorithms:
 Heterogenous Features based Structural Adaptive 

Regression (HF-SAR)
 Structural Adaptive Regression (SAR), ACM MM
 Adaptive Multiple Kernel Learning (A-MKL), T-PAMI 
 Multiple Kernel Transfer Learning (MKTL), ICCV 
 SAR&SVM
 SVM
 TaylorBoost, CVPR

Experiments
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 Average results (MinNDC/Pmd@TER=12.5/AP)

SAR A-MKL MKTL SAR&SVM SVM Taylor
Boost HF-SAR

0.860 0.881 0.873 0.841 0.850 0.902 0.817

0.601 0.617 0.610 0.572 0.575 0.677 0.549

0.162 0.144 0.153 0.183 0.181 0.080 0.201

Experiments



When using UCF50, HF-SAR is similarly more robust than 
SVM

HF-SAR is better than SVM for 17, 17, 15 events with 
different metrics

Evaluation 
Metric SVM HF-SAR Relative 

Improvement
MinNDC 0.965 0.932 3.5%

Pmd@TER=12.5 0.857 0.764 12.2%
AP 0.069 0.098 42.0%

Average performance of SVM and SAR

Experiments



 Influence of knowledge adaptation

Experiments



 Influence of auxiliary concepts

Experiments



Summary

 An attempt on MED with few exemplars
 More generic, complicated and meaningful 

events
 Knowledge adaptation from concepts-

based videos
 Heterogeneous feature type
 Effectiveness on TRECVID MED videos



Conclusion
Focused on image and video annotation and MED
 From algorithm perspective:

 Feature selection - Solution for Q1: A better representation?
 Semi-supervised learning - Solution for Q2: With few labels?
 Multimodal approach - Solution for Q3: multiple modalities?
 Shared subspace learning - Solution for Q4: Classifier-specific 

intermediate representation?
 Transfer learning - Solution for Q5: Handling complex event 

detection with few exemplars?

 From application perspective:
 Concepts to events
 Images to videos A Progressive Process



Ongoing Work

 Harnessing different features jointly as 
symbiotic solutions

 Model the importance of negative examples
 Knowledge adaptation that leverages 

unlabeled data in multiple related domains
 Knowledge adaptation between two domains 

that have partially shared data features
 User-centric research problems


