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Abstract—Disagreements over the meaning of symbols can
occur in mutliagent systems when two agents have different
classifications of their environment. We argue that a semiotic
approach to multiagent communication protocols can help to
overcome those disagreements. A triadic relation between a sign,
its intentional and its extensional definition allows us to use
argumentation theory in order to modify concepts dynamically.
Following this idea, we propose a simple protocol that allows
agents to solve disagreements over meaning in basic scenarios.
Finally, we describe three of those scenarios and discuss their
limitations and possible enhancements.

I. INTRODUCTION

Our computers, as Universal Turing Machines, are designed
to process symbols. However, when it comes to interface them
with reality – or at least our human reality – computer scientists
have to face a major issue. This issue is the definition of
symbols’ meaning, the symbol grounding problem. This issue
became popular with Searle’s Chinese room experiment [1]
and was one of the major issues in Artificial Intelligence during
the nineteen eighties. Today the question of symbol grounding
is claimed to be settled: its achievement is possible. But with
the ability to ground symbols arose a new problem in Artificial
Intelligence. How can we allow different intelligent systems to
communicate if they have grounded different symbol-meaning
associations? Since this issue has already been investigated by
linguists for centuries, computer scientists tend to use more and
more linguistic – and especially semiotic – models to overcome
the problem [2][3][4][5][6][7][8].

Multiagent systems and computational argumentation the-
ory are fields of computer science where the disagreement
over meaning issue is likely to occur. It has been shown that
argumentation theory can allow different agents, which uses
machine learning over different subsets of a training set, to
match what they have learned using arguments [10]. Those ar-
guments are features found in their environment or hypotheses
about the rules of this environment. Initial implementations of
the theory are confronted to the grounding problem when it
comes to merging the results of a classification achieved by
two agents on different subsets. Even in the case of supervised
learning, there is a huge probability that the two agents use
different generalizations. Those differences are due to the
random factor when it comes to considering generalization as
search in a graph space [9]. But the problem that we address is
more general and can be applied to multiagent systems when
the learning processes of the agents are different as well. This

is because argumentation theory takes place after the learning,
as an independent module [10].

Our long term research goal is to investigate how the
solutions from semiotics and computational semiotics can
meet the specific needs of argumentation theory. The answers
provided will be used to build a communication protocol for
multiagent systems. This protocol, based on argumentation
theory, will use a semiotic representation of symbols [11]. This
protocol should allow agents with different segregates of their
environment to communicate – communication provided by
the share of a same final set of symbols. In the section II, we
justify our choice to use computational semiotics in order to
reach our goal. We will then present a simple communication
protocol in section III. This protocol is evaluated on three basic
cases in section IV.

II. MOTIVATION

A. Considerations about semiotics

The historical notion of symbol in computer science is
clearly defined and has little to do with the notion of meaning
[1]. Moreover, with this implementation of symbols intelli-
gent systems are vulnerable to the symbol grounding issue
mentioned in section I. This issue is easily overcome by
human speakers [12][13]. They use their natural languages
along with the ability to align those languages with each
other. This observation on natural language speakers motivates
us to transpose the human mechanisms of communication
to the field of multiagent systems. By adopting a model of
concepts which rely on a semiotic paradigm we are developing
a communication protocol able to solve semantic alignment
issues. This protocol does so by turning the semantic alignment
problem into an agreement over the meaning problem, meaning
that is not necessarily present in artificial intelligence, but
that we can implement since the grounding problem is now
considered as solved [1]. We need to introduce meaning in our
protocol since it takes a central role in the linguistic description
of human communication with natural languages [14][15]. A
formal definition of the meaning is presented in the section III.
For the moment we will simplify this definition by saying that
meaning is what a listener considers that a symbol is standing
for. Meaning is not anymore self-contained into the symbol,
but emerges from the relation between the symbol and the
speakers. Therefore, symbols’ meaning is context-dependent –
or at least social context dependent.

Our approach to model contextual meaning is based on



the notion of contrast set developed in ethnographic studies of
how people actually give meaning to words [16]. A contrast
set is a collection of segregates, and a segregate is a “ter-
minologically distinguished array of objects”. For instance, a
buyer can enter an eatery and ask “What kind of sandwiches
ya got besides hamburgers and hot dogs?”, to which the seller
responds “How about a ham ’n cheese sandwich?”. Here the
collection of words describing the different kinds of products
one can eat are the contrasts set: hamburgers, hot dog, ham ’n
cheese sandwich, etc. However, the way one person segregates
and the word or sign used to refer to them is contextually
determined, which can lead to misunderstandings whose reso-
lution requires agents’ adaptation of their respective intended
meanings. An example of misunderstanding (from [16]) is
that of our client complaining by uttering this sentence: “Hey,
that’s no hamburger; that’s a cheeseburger”. The origin of the
misunderstanding is that the client is considering hamburger
and cheeseburger as two different elements in the contrast set
he is using to conceptualize the eating options, while the seller
considers that cheeseburger is the subset by default of the meal
category hamburger.

The “meaning is use” paradigm is inspired by Wittgen-
stein’s Philosophical Investigations, and is the underpinning
of ethnographic notions of contrast set, as well as what
Wittgenstein labels at “language games”. We will approach
the large problem of contextual meaning in a limited way, in
scenarios where agents can negotiate and agree on meaning
by building new contrast sets in a new context.

As a running example of context-dependent meaning we
will use the common sense domain of Furniture Shopping. Let
us assume they have some default meaning of some concepts
(often called ontologies in Artificial Intelligence), for instance
about furniture. If we ask two agents before they interact if an
armchair is a chair they would probably answer affirmatively.
For our purposes, we can set that armchair is a sub-concept
of the chair concept. Now, imagine the buyer enters the shop
and tells the seller: “I want to buy one armchair and four
chairs”. If the seller understands the meaning intended by
the buyer – buying four chairs without arms and one with
– no misunderstanding arises, and they will keep talking
about “chairs” and referring to particular objects in the shop
that are chairs without any disagreement on any specific
object. Nevertheless, they are not using “chair” to refer as the
same concept as before: now it means in fact chairs without
arms. This is because the buyer has created the contrast set
{armchair, chair}, and by doing so he has implicitly decided
to use the word “chair” with a new intended meaning. If the
two agents consistently use the term “chair” to refer only to
objects in the shop that are chairs and are not armchairs, we
say they have achieved an agreement on meaning. This shift in
the meaning of a term or word is so pervasive that we humans
are hardly aware of it, but we would consider it wrong if the
seller tried to sell three armchairs and two chairs without arms
(which is consistent with the default meaning of “chair” and
“armchair”).

The issue we need to address now is how to represent con-
cept meaning in a way that allows us to have a computational
model in which the sort of change in meaning illustrated in
the furniture example is achieved by creating contrast sets. As
we said, the approach is semiotic: a concept is represented

by a semiotic triangle 〈S, I, E〉 with three components: a sign
S, a meaning – its intensional definition, and an object or
referent – its extensional definition [11]. In this view, a sign
like “chair” can have two different meanings in the Furniture
shopping scenario by belonging to two different semantic
triangles. What we called the default meaning is often found
in dictionaries and ontologies. It specifies the typical or more
frequent sense of a sign like “chair”, and could be expressed
in a semiotic triangle 〈“chair”, I, E〉 where I is the default
meaning of chairs (including armchairs and other sorts of
chairs), and E is the set of objects that can be referred to by
that sign. However, after the buyer introduces the new contrast
set {armchair,chair}, the meaning of the sign “chair” has to
change in order to achieve successful communication. In the
Furniture Shopping scenario, the agreed meaning of that sign
can be expressed in a new semiotic triangle 〈“chair”, I ′, E′〉,
where now the agreed meaning I ′ is that of chairs without
arms (because when referring to those the agents would use
the “armchair” sign). Moreover, the set of objects that may
stand as referents of the sign has also changed, since E′ is
about objects that are chairs but not armchairs.

Specifically, our computational model will assume two
agents with possibly different contrast sets, and we will assume
that each term in a contrast set is a sign S1 represented as
a semiotic triangle, in which the segregate corresponds to
extensional definition E1 of that triangle.

B. Related work

The present work expands the agent-based “concept con-
vergence” approach in [?], where argumentation and agreement
were not contextual but focused on a single, isolated concept.
Besides the argumentation theory and machine learning back-
ground developed in that approach, we are listing a few other
approaches related to our work below.

1) Computational Semantics: Attempts of using semiotics
in computer science have already been done and led to the
field of computational semantics. The aim of computational
semantics is quite different than ours. The main objective of
computational semantic is the representation of knowledge by
one entity [4][5], not the communication between different
agents. However, the mathematical theory of objects could be
a useful source of inspiration for our future work, if we need
to enhance the complexity of our interpretation of the semiotic
triangle. The detailed structure of objects in computational
semantics could be substituted to our simple features and
therefor allows the agents to have more control over the
construction of their meanings.

Computational semiotics starts from a will to make arti-
ficial intelligence similar to human intelligence by using the
same semiotic approach of concepts [7][8]. On the contrary,
our aim is to solve an identified issue from argumentation
theory in computer communication by getting inspiration from
natural language semiotic. We can oppose the two goals by
stating that computer semiotics aims to be an exhaustive
learning method of concepts while our approach is more a
lazy learning method. The two approaches are working on the
same field and can be seen as complementary, but they start
from two different limits of this field.
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Fig. 1. A contrast set is a set of concepts that partition a domain of examples.
To mutually adapt their meaning of concepts, each agent can create a new
contrast set (in addition the old one) that allows it to reach an agreement
over the meaning of a concept if that concept arose a disagreement in the old
contrast set.

2) Ontology Matching: Ontology alignment has been stud-
ied on database schemas, XML schemas, taxonomies, formal
languages, entity-relationship models, and dictionaries. For-
mally, while matching is the process of finding relationships
or correspondences between entities of different ontologies,
alignment is a set of correspondences between two (or more)
ontologies (by analogy with molecular sequence alignment,
according to [17]). Thus, alignment is the output of the
matching process.

There are two families of approaches to ontology align-
ment: (1) syntactic approaches establish matchings among
predicates, terms or other structural properties of a formalism,
essentially focusing on a notion of similarity; (2) seman-
tic approaches establish logical equivalence correspondences
among ontology terms, essentially focusing on a notion of
semantic equivalence. We considers here “semantic” in a
logical paradigm. We propose a third approach, different of
those two: a semiotic viewpoint that takes into account both
the extensional and intensional definitions of a concept.

There is a second difference between ontology matching
and an agent-based approach. For each agent, concept mapping
is performed inside each individual agent, not by a third party
comparing two (external) ontologies. Finally, we do not deal
with an initial set of ontologies, as it is commonly done
in ontology matching. We deal with agents that argue and
agree over concepts based on how the concepts are used in
a particular context.

III. A SEMIOTIC APPROACH TO MEANING ALIGMENT

Now that the issue of agreement over the meaning has
been stated, we present our attempt to solve it. This attempt is
motivated by our analysis of the state of the art presented in
section II. The reader should keep in mind that the protocol is
symmetric for both agent when he reads this section.

A. Concepts and Contrast Set

As we said, a concept Ci is understood as a semiotic
triangle, i.e., as being composed of a sign si, an intensional
definition I(Ci) and an extensional definition E(Ci). We use
the notation Ci = 〈si, I(Ci), E(Ci)〉 to represent a concept Ci
as shown in figure 1. E(Ci) is understood as the set of objects
or examples known by the agent as belonging to concept Ci.
The intensional definition I(Ci) contains a set α1 . . . αm of
generalizations such that ∀e ∈ E(Ci),∃α ∈ I(C) : α v e and

∀α ∈ I(C),∃e ∈ E(Ci) : α v e. We will use the notation
I(Ci) v e when there is a generalization in the intensional
definition that subsumes the example e, and to say that an
example belongs to the concept which sign is si we will also
use the notation si v e.

We introduced the notion of contrast set as a collection of
concepts that induces a partition on a domain. We will now
define a contrast set in which concepts are represented by the
semiotic triangle. A contrast set K consists of a collection
concepts K = (C1, . . . Cn), with a collection of signs s(K) =
(s1, . . . , sm), a collection of intensional definitions I(K) =
(I(Ci), . . . , I(Cm)), and set of examples E(K) = E(C1) ∪
. . . ∪ E(Cm) belonging to those concepts. Since a contrast
set determines a partition of the elements in E(K), now each
intensional definition I(Ci) ∈ I(K) has to comply with the
following property: ∀e ∈ E(K)\E(Ci) : I(Ci) 6v e —i.e., the
generalizations in I(Ci) should not subsume an example also
subsumed by a generalization from an intensional definition of
another concept in the contrast set.

To explore the notion of agreement over concept meaning,
we use a scenario with two agents that have individual (and
possibly different) contrast sets over the same domain. The
agents jointly observe new elements in this domain, and
categorize elements in one of the concepts of their individual
contrast sets. Disagreement arises when agents try to talk about
a concept and the signs of the concept in which the example
is categorized are different. Upon disagreement, the agents
engage in an exchange of arguments to adapt their individual
contrast sets to one another until the disagreement is solved.
This is an iterative process in which both agents build two new
contrast sets that are closer: K1

adapt−−−→ K ′1 � K ′2
adapt←−−− K2

(see Fig. 1 and Fig. 2).

B. Communication Protocol

We assume that our agents already share the language L
and are able to exchange information through a communication
protocol that we will specify, using messages with five different
kinds of communicative acts:

• Assert(s, e): this message affirms that the sender con-
siders e to be an example belonging to the same
concept as the sign s (s v e).

• Accept(s, e): this message confirms that the sender
agrees on fact that e is in the concept whose sign
is s (s v e).

• Refuse(s, e): this message informs that the sender
disagrees on fact that e is in the concept whose sign
is s (s 6v e).

• Ask(s, e): this message asks to the other agent which
generalization, in the concept whose sign is s, sub-
sumes e.

• Answer(s, β, e): sends the generalization β, in the
concept whose sign is s, that subsumes e (β v e).

The basic elements of our communication protocol have
been presented. We will now present how an agent reacts to
those communicative acts. The relation between the elements



of language and the language user – in our case the agent –
is central in Peircean Semiotics [11].

In order to explore the possibilities offered by the use of
contrast sets, we implemented three different scenarios that we
present in the section IV. We will now present the protocol
used by two agents to build and organize their contrast sets in
order to achieve a mutual agreement. A sketch of the protocol
is as follows:

1) The two agents are waiting for the presentation of an
example.

2) An example ex is presented to the agents. Each agent
Ai categorizes the example with a sign si and sends
Assert(si, ex) to the other agent.

3) Each agent verifies whether the received sign sj is in
its contrast set. If the sign is unknown the agent goes
to step 5, otherwise they go to step 4.

4) Each agent verifies whether sj v ex in its individual
contrast set:
• if it is true, the agent does not disagree with

the meaning of sj (si = sj) and sends the
message Accept(sj,ex). Then the agent goes
to step 1;

• if it is not true, the two agents are going
to create new concepts in order to reach an
agreement over the contextual meaning of the
sign used. They go to step 5.

5) If there is at least one agent which does not have
one of the exchanged signs in its contrast sets, e.g.,
si, then this agent sends a message Ask(si, ex) to the
other agent.

6) The other agent sends back an Answer(si, αm, ex)
where αm is the generalization that subsumes ex
(αm v e).

7) The agent that did not know si uses the received
generalization αm to check if the unknown sign is a
synonym or an hyponym of a known concept I(Cj)
(more details about the process of 7 are given at the
end of the scenario):
• in case of synonymy, the agent creates a new

concept for the sign si;
• in case of hyponymy, the agent creates two

new concepts; one for si (the unknown sign)
and one other for sj (the sign this agent sent
when categorizing ex);

• otherwise, the agent sends a Refuse(si, ex).
8) The agent incorporates those concepts:

• if no new contrast set has been created for the
current social context yet, the agent creates
one and puts the new concept(s) into it, while
including as well the rest of the concepts from
the first contrast set that are left unchanged by
any changes;

• if a contrast set has already been created, Ci is
removed from it and the new concept(s) is/are
added.

9) The agent returns to 3 (although this time it will not
disagree at 4).

We will now provide more details about the internal process
occurring during the step 7. When an agent receives the

message Answer(si, αm, ex), its interpretation process starts
by starts by creating the set of examples E(C∗i ) that contains
all the examples e∗i from the extensional definition E(Kl) of
its current contrast set Kl which verify the property αm v e∗i .
Then, ∀Cj ∈ Kl.

In the case of a synonym, the new concept created is: Ca =
〈si, I(Cj), E(Cj) ∪ ex〉. Since there is synonymy, there is no
need to change the extensional and intensional definitions from
the old concept Cj , except from adding the new example ex
to the extensional definition of course.

However, in the case of an hyponymy, the agent creates a
second new extensional definition E(C∗∗j ) = E(Cj)−E(C∗i ).
At this point, the agent has created two new concepts,
namely Ca = 〈sj , I(Ca), E(C∗∗j )〉 and Cb = 〈si, I(Cb) =
αm, E(C∗i )∪ex〉. After these two concepts are incorporated to
the current contrast set it still need to generate the intensional
definition of the Ca concept. Now, in order to create this
intensional definition I(Ca), we use the ABUI argumentation-
based inductive learning method [?] that takes set of examples
E(Kn) an positive examples, and the rest of examples in the
contrast set as negative examples.

• if ∃Cj : E(Cj) = E(C∗i ), then the agent recognizes
si as a synonym;

• if ∃Cj : E(Cj) ⊂ E(C∗i ), the agent recognizes si as
an hyponym (Fig. 2).
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Fig. 2. When a new concept is needed, the agent asks the relevant
generalization from the other agent’s intentional definition of that concept; this
generalization (e.g., α) leads to a split of the previous extensional definition
E4 in two: E5 (examples subsumed by α) and E′

4 (the rest).

IV. SCENARIOS

We present three scenarios to test the agents’ ability to
reach an agreement over some concept meaning. The examples



TABLE I. INITIAL CONTRAST SETS OF AGENTS A1 AND A2 IN
CONCEPT HYPONYMY

C. set Agent 1 contrast set K1

Concept C1 C2

Sign stool chair
I(C) α1: no.arm, no.back α2: with.back

C. set Agent 2 contrast set K2

Concept C3 C4

Sign chair armchair
I(C) β1: no.arm β2: with.arm, with.back

TABLE II. FINAL CONTRAST SETS OF A1 AND A2 IN CONCEPT
HYPONYMY

C. set Agent 1 contrast set K′
1

Concept C1 C5 C6

Sign stool chair armchair
I(C) α1: no.arm,

no.back
α3: no.arm,
with.back

β2: with.arm,
with.back

C. set Agent 2 contrast set K′
2

Concept C7 C8 C4

Sign stool chair armchair
I(C) α1: no.arm,

no.back
β4: no.arm,
with.back

β2: with.arm,
with.back

used in those scenarios are referring to the common sense
domain of seats. Specifically, examples of seats are divided in
three categories: Chairs, Armchairs and Stools, where we are
using their typical definitions: (1) a stool has no back and no
arms, (2) a chair has a back but no arms, and (3) an armchair
has a back and arms. In every scenario, agents A1 and A2 start
with their own individual contrast set. Given a new example
ex, they will try to solve their disagreement when it occurs.

A. Concept Hyponymy

In the first scenario the two agents have initially their
contrast sets K1 and K2, shown in Table I. The first example
e1 presented to both agents is an armchair. The two agents first
send Assert(chair, e1) in the case of A1 and Assert(armchair,
e1) in the case of A2. They both discover a disagreement. The
sign armchair /∈ S(K1) so A1 sends Ask(armchair , e1) to
A2. A2 responds with Answer(armchair β2) since β2 @ e1.
Then, A1 creates the subset E(C6) = {ei ∈ E(C2)|β2 v ei}.
Since E(C6) 6= E(C2), A1 creates the subset E(C5) =
E(C2) − E(C6). No contrast set has been created yet, so
A1 creates a new contrast set K ′1. The new concepts C5 =
〈chair, I(C5), E(C5)〉 and C6 = 〈armchair, β2, E(C6) ∪ e1〉
are added to K ′1 with the concept C1. Then, A1 performs an
induction on the new E(K ′1) for the sign chair that results
to the generalization α3 which is added to I(C5). Finally, A1

sends an Accept(armchair).

The second example presented, e2, is a chair. The agents
send to each other Assert(chair, e2). Since both agents agree
on the use of chair as a sign to describe a chair, they just send
to each other two messages Accept(chair, e2).

The last example e3 presented to the agents is a stool. As
with e1, they both notice the disagreement over stool and chair,
but this time stool /∈ K2. It leads A2 to send Ask(stool, e3) to
A1. Since α1 @ e3, A1 sends back Answer(stool, α1). Now it is
A2’s turn to create a subset E(C7) = {ei ∈ E(C3)|α1 v ei},
and since E(C7) 6= E(C3), A2 creates the subset E(C8) =
E(C3)−E(C7). No new contrast set has been created by A2,
so it creates K ′2. The new concepts C7 = 〈stool, α1, E(C7) ∪
e3〉 and C8 = 〈chair, I(C8), E(C8)〉 are added to K ′2 with

the concept C4. A2 performs an induction on the new E(K ′2)
for the sign chair. The resulting generalization β4 is added
to I(C8). Finally, A2 sends an Accept(stool, e3) to A1. The
contrast sets are now as shown in Table II. We can now see
that K ′1 and K ′2 are mutually intelligible.

B. Concept Synonymy

TABLE III. A1 AND A2 CONTRAST SETS IN CONCEPT SYNONYMY

C. set Agent 1 contrast set K1

Concept C1 C2 C3

Sign stool chair armchair
I(C) α1: no.arm,

no.back
α2: no.arm,
with.back

α3: with.arm,
with.back

C. set Agent 2 contrast set K2

Concept C4 C5 C6

Sign stool chair recliner
I(C) β1: no.arm,

no.back
β2: no.arm,
with.back

β3: with.arm,
with.back

In the second scenario the two agents have initially their
contrast sets K1 and K2 as shown in Table III. The only
example e1 presented to both agents is an armchair. A1 sends
Assert(armchair, e1) to A2 and A2 sends Assert(recliner, e1) to
A1. It leads to a disagreement between A1 and A2. Since arm-
chair 6∈ K2 and recliner 6∈ A1 neither, both agents can send an
Ask message. Let’s say that A1 receives the Ask message first;
A1 will respond with Answer(armchair, α3), where α3 is the
generalization that was used by A1 to categorize e1. A2 creates
a new set of examples E(C7) = {ei : ei ∈ E(C6)|α3 v ei}.
No contrast set has been created before so A2 creates K ′2.
Since E(C7) = E(C6), a new concept C7 = 〈armchair,
I(C6), E(C6)∪ e1〉 is created and added to K ′2 along with C4

and C5. Accept(armchair,e1) is sent to A1 by A2. We notice
that if A1 had been faster than A2 to send its Ask message, it
is recliner that would have been used to designate Armchair by
both agents. This would not have hindered them from reaching
mutual intelligibility.

C. Concept Teaching

This time K1 is still as it was in Table III but K2 is
modified as shown in Table IV. The first example e1 presented
to the agents is a stool. A1 sends Assert(stool, e1) to A2

and A2 Assert(seat, e1) to A1. Since seat /∈ S(K1) and
stool /∈ S(K2), each agent can send an Ask message to the
other. Let’s say that A1 is the fastest to send its Ask(seat
message, e1), A2 sends Answer(seat, e1).any @ α1, α2 and
α3: A1 sends Refuse(seat, e1) to A2. Now A2 sends Ask(stool,
e1) to A1. A1 sends back Answer(stool, α1). Now A2 creates
the subset E(C5) = {ei : ei ∈ E(C4)|α1 v ei}, and
since E(C5) 6= E(C4), A2 also creates the subset E(C6) =
E(C4) \ E(C5). No contrast set has been created yet so A2

creates K ′2.The new concepts C5 = 〈stool , α1, E(C5) ∪ e1〉
and C6 = 〈seat, I(C6), E(C6)〉 are added to K ′2. New gen-
eralizations for seat, β3 = with.back and β4 = with.arm, are
learned by induction from E(K ′2) and added to I(C6).

The second example presented e2 is a chair. A1 sends
Assert(chair, e2) to A2 and A2 Assert(seat, e2) to A1. Again,
seat /∈ S(K1) and chair /∈ S(K ′2) so each agent can send an
Ask message to the other. Let’s say that this time A2 is faster
and sends Ask(chair, e2) to A1. A1 sends back Answer(chair,
α2) since α2 @ e2. A2 creates a new set E(C7) = {∀ei :



TABLE IV. A2’S CONTRAST SETS BEFORE CONCEPT TEACHING

C. set Agent 2 contrast set K2

Concept C4

Sign seat
I(C) β1 : any

TABLE V. A1 AND A2 CONTRAST SETS AFTER THE LAST CONCEPT
LEARNING IN CONCEPT TEACHING

C. set Agent 2 contrast set K′
2

Concept C5 C7 C9

Sign stool chair armchair
I(C) β2: no.arm,

no.back
α2: no.arm,
with.back

β6: with.arm,
with.back

ei ∈ E(C6)|α2 v ei}, and since E(C7) 6= E(C6), A2 also
creates the subset E(C8) = E(C6)\E(C7). The new concepts
C7 = 〈chair , α2, E(C7)∪e2〉 and C8 = 〈seat , I(C8), E(C8)〉
are added to K ′2. The concept C6 is removed from K ′2. A
generalization for seat, β6, is learned by induction from E(K ′2)
and put into I(C8). A2 sends Accept(chair, e2) to A1.

The last example presented e3 is an armchair. A1 sends
Asset(armchair, e3) to A2. Meanwhile A2 sends Assert(seat,
3) to A1. Since seat /∈ S(K1) and armchair /∈ S(K ′2), both
agents can send an Ask and let’s say that this time again A2

is quicker and sends Ask(armchair, e3) to A2. Since α3 @
e3, A1 sends back Answer(armchair, α3). After receiving the
answer, A2 creates a new set of examples E(C9) = {∀ei :
ei ∈ E(C8)|α3 v ei}. Since E(C9) = E(C8), a new concept
C9 = 〈armchair, I(C8), E(C8) ∪ e3〉 is created and added to
K ′2 while C8 is removed. An Accept(armchair,e3) is sent to
A1. Table V shows the new K ′2.

V. DISCUSSION

The three scenarios discussed in IV show that agreement
over meaning can solve semantic alignment issues in a simple
way. Two agent do not have to match all their representations
– whatever they are, here concepts – in order to communicate.
Since our agents do not try to be exhaustive, but rather
pragmatic in their alignment, we can qualify our approach
as a lazy method. However, with this lazy method, it is
possible to reach an agreement on the use of a set of symbols.
Those symbols, therefore, are designed and implemented in
a semiotic conception. This conception allows them to be
flexible enough to achieve an online refinement of the meaning
of the signs they use.

An important point of this protocol design is its
cooperation-oriented mechanism. Argumentation theory can be
seen as a competitive theory, with each agent trying to attack
other agents’ arguments and defend its own. However, in our
protocol the agents try to find how to adapt their symbols’
representations in order to agree with their interlocutor. This
becomes possible since agents are not in a Realist paradigm
where they have to defend their beliefs that are considered as
truths. They are the only one in charge of what is true and
what is not. Therefore, they have a pragmatic approach and
their goal is to be able to communicate with each other in a
minimal number of steps.

It is possible to argue about the usefulness of extensional
definitions in our model. In fact, the model could be adapted to
work only with the signs and the intensional definitions. The

agent’s test to determine if a received intensional definition
is a hyponym or a synonym of one of its own sign can be
done directly on the intensional definition. According to this
observation, extensional definitions only bring more complex-
ity in the model by eventually necessitating to be split. In fact,
we plan to give the extensional definition a central role in the
future iterations of our model. This idea is explained in section
Future Work.

Another arguable aspect in the conception of our model
is the presence of semantic content in message types (Assert,
Ask, Answer, Accept and Refuse). The presence of performative
information in the structure of a message is common in
multiagent systems protocols, for example in FIPA [18]. But
in our case, we want a fully context dependent meaning. Since
performative information can be considered as the structure of
our protocol, it is hard to imagine how to get rid of it. However,
recent studies on multiagent systems composed of agents able
to communicate without sharing the same protocol could lead
to a solution for this problem.

Another objection along similar lines is that our system, our
system uses a set of already-grounded symbols. The features of
our examples are interpreted in the same way by both agents
– they are sharing the language L – and it means that for
the moment, we are basically moving the symbol grounding
issue to another level of detail in the meaning, but we are not
addressing the question of the meaning itself. However, we can
consider this as a recursive problem. Therefore, it becomes a
graph theory problem where all the level of details can be
discussed between the two agents. This solution is detailed in
the section V.

In the scenarios, we have not tested the performances of
our model against other computational solutions presented in
the state of the art. We believe that it would make little
sense at this early stage of our research. A first point is that
we have no ontologies in our model. If we wanted to test
it against ontology matching algorithms, we would have to
provide them an ontology of the problem or to make the agents
able to learn those ontologies. It means that we should either
provide information to those algorithms, information that our
model does not need, or add a learning phase and study its
impact. However, we stated that a key point of our model is its
learning-independent feature. To compare it to other existing
approaches to the problem, there is an issue with complexity..
It is complicated to propose a valid test to evaluate our model
on such simple scenarios. New iterations of the protocol should
introduce more complexity and allow us to actually compare
the performances of our model to other state-of-the-art models.

We close this discussion with a review of our model’s
limitations – as announced in section III. Our model can only
handle cases where two concepts in conflict have a hyponymy
or hyperonymy relation. In such cases, the attitude to adopt
is obvious: the agent confronted to a hyponym of one of its
concepts has to learn this hyponym. Doing nothing would not
solve the disagreement and making the agent learning only
hyperonyms would lead to build more general meaning of
concepts at each disagreement, which would lead to a loss
of information over time. But when a concept’s intensional
definition from an agent A1 subsumes a set of examples
belonging to two different extensional definitions of another
agent A2, the situation is reciprocal. In this case, A2 would



also have one of its intensional definitions subsuming a set
of examples belonging to two different extensional definitions
of A1: which agent should change its intensional definition?
We call this the “overlapping definitions” problem. In section
Future Work, we propose our ideas to calculate the cost of
each possible change in this situation, and to take an optimal
decision.

FUTURE WORK

The extensional definition is a central element of our
future work. We saw that one of our model’s limitation is
the need of some grounded symbols. Those symbols have a
shared meaning for the two agents. The agents can disagree
on the meaning of chair or armchair but to overcome this
disagreement they need: (1) signs to describe the elements of
the lexical domain – the features – as with.arm, with.back or
without.back and (2) those signs – whichever they are – have
to be numerous enough to create a partition of this lexical
domain. The second condition is not too difficult to fulfill in
the simple scenarios that we are investigating. The first point
is a more problematic issue. There is no particular reason why
the sign with.arm should be different from the sign arm. Each
sign should be described by a combination of feature terms and
each feature term should be considered as a sign. This leads us
to a recursive approach where agents can have several levels
of contrast sets and are able to argue about the meaning of
all the signs of their language L. We do not want to address
the specific issue of the learning of a set of new signs, we
rather investigate how the systemic relations of all the elements
from the already existing L can dynamically change in order
to reach an agreement. We plan to consider the examples of
our extensional definition as possible intensional definitions for
more specific concepts to overcome this issue. In our scenario,
the extensional definition of seat would be the intensional
definition of chair, armchair and stool. However, we are still in
the particular case. The relations between the concepts are just
hyponymy and hyperonymy. With overlapping definitions the
process would be more difficult to design since the relations
between concepts would not draw an oriented graph anymore.

The main issue with our model in its current stage of
development is the overlapping definitions problem. It is
necessary to evaluate the cost of a conceptual shift to be able to
decide which agent should change its concept. Our first thought
was to take the number of examples from the extensional
definition subsumed by the new intensional definition as a cost
function. However, since we are trying to set the elements
of our extensional definition as intensional definitions of sub-
concepts, this cost function would be susceptible to change
over the time. It is a problem since an optimal decision at t
might become the less optimal solution at t+ 1 for the same
situation. This would mean that we have to re-evaluate all
the concepts of a contrast set every time than an intensional
definition is modified – independently of its position in the
global hierarchy of contrast sets. We have to evaluate if this
solution would be better or worse than an arbitrary decision.
We consider here the best and worst in terms of number of
changes operated on a long scale of time. The naive answer
would be that this solution should lead at least to the same
results as an arbitrary decision since it is optimal on a one-
trial scale. But a large number of examples can also be an
index of a too general concept that will have to be changed

anyway on a long run. In this case, it could be more useful to
see the number of examples as a gain function rather than a
cost function.

The next step of our work is to introduce more complexity
in our lexical domains. We started with only three words and
a dozen features – with only three of them being relevant to
determine a sign’s use in the most complicated case. In order
to compare our model with other state-of-the-art models, we
would like to handle more complex examples. In order to do
so we plan to take examples from the biological domain of
marine sponges. The associated data set has been already used
in argumentation theory studies [19]. Since its taxonomy is still
debated by researchers in phylogeny, we can assume that the
complexity of the task is high enough to offer a good material
for tests.

For the moment we limited our scenarios to two-agent
systems. We are not interested in testing our model with more
than two agents at this point of our research. This change
would introduce specific issues by complicating drastically the
rules of speak priority. We want to face this issue only after
having already built a fully functional model working with
two agents. The case of diachronic evolution of used signs in
agent networks has been already studied [20], but not with a
similar protocol as ours. However, the results of this study on
the dynamic of words’ use provides a solid ground to have a
hint of what we should expect from this scenario.

We have fulfilled the objectives that we fixed to ourselves
for this first investigation. Moreover, we have now serious trails
on how to continue and complete them.
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